

Study on the initial position of Taylor vortex for **Taylor-Couette-Poiseuille flow formed by** supercritical carbon dioxide

- Fengxiong Lu, IET, UCAS Chaohong Guo*, IET, UCAS
- - Shijie Zhang, IET, UCAS
 - Buze Chen, IET, UCAS
 - Bo Wang, IET, UCAS
 - Xiang Xu, IET, UCAS

The 8th International Supercritical CO₂ Power Cycles • February 27 – 29, 2024 • San Antonio, TX, USA

Supercritical CO₂ Power Cycles Symposium

Supercritical carbon dioxide Brayton cycle

— Compactness

- Rapid response
- High power generation efficiency
- Flexibility

INTRODUCTION

Turbine is one of the key equipment

— High temperature \ Pressure \ Rotational speed

Achieving effective cooling

- —From the high temperature end (>500°C) to the low-temperature
- end of the bearing (<150°C) within a confined space
 - Utilizing the sCO₂ fluid

Taylor vortices 1. Temperature fluctuations 2. Pressure fluctuations

3. Wind friction losses

Research purposes

Supercritical carbon dioxide Taylor-Couette-Poiseuille flow

INTRODUCTION

— Study the flow characteristics / initial position of Taylor vortices (Predictive model)

— Find measures to weaken fluctuations and reduce excitation

2. Turbine shafts run at exceptionally high speeds

Taylor-Couette-Poiseuille flow physical model

- Heat transfer
 Resistance loss

Research methods

- 1. Experimental
 - Experimental conditions are strict, difficult to observe Taylor vortices
 - Flow field parameters are difficult to accurately measure
- 2. CFD method V
 - Accurate calculation of flow field parameters
 - Conduct large-scale parameter studies
- 3. Matrix nonlinear regression/Neural Networks V
 - Powerful high-dimensional data processing and non-linear relationship capture capabilities

RESEARCH METHODS

Research literature review of Supercritical carbon dioxide Taylor vortex

Under high Re, and Ta conditions, the initial position of Taylor vortices formed by sCO₂, along with the methods to suppress their formation, have not been fully elucidated.

Computational model

Key parameter

Radius ratio	$\eta = (F$
Gap width	$\delta = R_2$
Aspect ratio	$\Gamma = L$
Reynolds num	ber <i>Re</i>
Taylor number	Ta =

PHYSICAL MODEL

$$R_2 - R_1)/R_1$$

$$2 - R_{1}$$

$$/\delta = \frac{V_a D_h}{\nu}$$

$$= \frac{\omega^2 R_1 (D_h/2)^3}{\nu^2}$$

The 8th International Supercritical CO₂ Power Cycles • February 27 – 29, 2024 • San Antonio, TX, USA

Meshing

- 1. Structured mesh
- 2. Encryption of inner and outer walls

Physical properties parameters NIST REFORP physical properties database

Grid independence verification

Model parameters and simulation conditions

Parameter	Value
R	12.5mm
Annulus height	4mm
	136mm
Û	0~25000RPM
T	50~150°C
sCO ₂ temperature	50°C
sCO ₂ pressure	10MPa
sCO ₂ Mass Flow	0.015kg/s~0.24kg/s

- diminishes.
- 2. The number of grids is 573×10^4 .

GRID INDEPENDENCE VERIFICATION

1. As the number of grids increases, the variation in Nu values among different grid numbers gradually

Grid number

Numerical simulation algorithm reliability verification

Nu calculation formula (From Swann et al.)

$Nu = 8.2 \times 10^{-3} Re_{eff}^{0.84}$

Comparison of simulation results and calculation results

T _s /K	Formula (6) Calculated	k-ω SST		k-ω Standard		k-ε RNG		k-ε Realizable	
		Simulation	error	Simula	error	Simula	error	Simulation	error
			%	tion	%	tion	%		%
343.15	2418.13	2322	-3 06	2245	-7.16	2209	-8.62	2330	-3.64
		.37		.05		.76		.21	
353.15	2201.70	2249	218	2157	-2.02	2124	-3.49	2129	-3.29
		.60		.27		.85		.23	

ALGORITHM RELIABILITY VERIFICATION

Model parameters and simulation conditions

Value
12.5mm
4mm
136mm
0~25000RPM
50~150°C
50°C
10MPa
0.015kg/s~0.24kg/s

Characteristics of Taylor Vortex formed by sCO₂ Rotation speed 200rad/s Mass flow rate 0.008kg/s

RESULTS AND DISCUSSION

The 8th International Supercritical CO₂ Power Cycles • February 27 – 29, 2024 • San Antonio, TX, USA

$0.00\,0.01\,0.01\,0.02\,0.03\,0.04\,0.04\,0.05\,0.06\,0.06\,0.07\,0.08\,0.09\,0.09\,0.10\,0.11\,0.11\,0.12$

Poiseuille flow

Taylor vortex initial position contours

its initial position.

2. The radial velocity profile shows a periodic change of positive and negative alternations.

RESULTS AND DISCUSSION

1. When unsteady secondary flow occurs, the starting position of the Taylor vortex, where the first vortex appears, is

The 8th International Supercritical CO₂ Power Cycles • February 27 – 29, 2024 • San Antonio, TX, USA

9

Detailed parameter setting

Simulate working

conditions Inner wall radius

Inlet temperature

Pressure

Axial Reynolds

number

Taylor number

Radius ratio

Aspect ratio

The 8th International Supercritical CO₂ Power Cycles • February 27 – 29, 2024 • San Antonio, TX, USA

RESULTS AND DISCUSSION

The radius of the rotating wall, the inlet temperature of sCO_2 , and the working pressure remain constant.

	3	
12.5	Smm	
11(JoC	
10N	ЛРа	
.04	3.0×10^{4}	
	$\sim 2.0 \times 10^{5}$	
× 10 ¹²	$3.3 \times 10^{10} \sim 6.24 \times$	
	10 ¹²	
9	0.11~0.67	
	16~108	

1. The effect Re^{*a*} on the initial position of the Taylor vortex

formation of Taylor vortices. The 8th International Supercritical CO₂ Power Cycles • February 27 – 29, 2024 • San Antonio, TX, USA

RESULTS AND DISCUSSION

Boosting the inlet flow rate of the T-C-P flow can enhance the stability of the flow and effectively inhibit the

 $Re_a = 9.65 \times 10^4$

2. The effect of Ta on the initial position of the Taylor vortex

Elevating the rotational speed results in heightened instability for the T-C-P flow, an augmented quantity of Taylor vortices, and a closer proximity of the initial position of the Taylor vortex to the inlet. The 8th International Supercritical CO₂ Power Cycles • February 27 – 29, 2024 • San Antonio, TX, USA

RESULTS AND DISCUSSION

3. The effect of η on the initial position of the Taylor vortex

Keeping the streamwise length of the T-C-P flow constant while maintaining the same axial flow velocity and

RESULTS AND DISCUSSION

rotational speed, increasing η will effectively suppress the formation of Taylor vortices. The 8th International Supercritical CO₂ Power Cycles • February 27 – 29, 2024 • San Antonio, TX, USA

4. The effect of Γ on the initial position of the Taylor vortex

RESULTS AND DISCUSSION

As r increases, the initial relative position z/L of the Taylor vortex diminishes progressively. The absolute location Z of the Taylor vortex remains virtually constant.

Multivariate matrix exponential regression model construction

1. Suppressing the generation of Taylor vortices in the turbine shaft can be achieved by increasing the inlet flow rate, reducing the shaft speed. 2. Approximate solution. Not suitable for large-scale and high-precision prediction. The 8th International Supercritical CO₂ Power Cycles • February 27 – 29, 2024 • San Antonio, TX, USA

RESULTS AND DISCUSSION

$$+ x_3 \ln((\frac{R_2 - R_1}{R_1})_{n3}) + x_4 \ln((\frac{L}{R_2 - R_1})_{n4})$$

$$Y = \begin{pmatrix} \ln(z/L)_{11} \\ \ln(z/L)_{21} \\ \ln(z/L)_{31} \\ \vdots \\ \ln(z/L)_{n1} \end{pmatrix}$$

$) = \ln((z/L)_n)$

Neural network model

Input Layer $\in \mathbb{R}^4$

Data transfer

RESULTS AND DISCUSSION

560 sets of data, 70% of the data is selected as the training set, 15% of the data is the verification set, and 15% of the data is the test set.

The 8th International Supercritical CO₂ Power Cycles • February 27 – 29, 2024 • San Antonio, TX, USA

Model parameter settings

Parameter	
neural network model	fee
number of iterations	
performance value	
learning rate	
algorithm function	
transfer function	
performance function	

Set up edforward backpropagation 10000 0.0001 0.001 Levenberg-Marquardt Tansig-Purelin MSE

Neural network model calculation results

RESULTS AND DISCUSSION

1. Most of the data points align closely with the fitted data line. 2. The 4-10-1 Taylor vortex initial position prediction model can achieve precise forecasts.

Comparison between matrix nonlinear regression and neural network Parameter settings

- below 10%.

RESULTS AND DISCUSSION

Value	
12.5mm	
16.5mm	
110°C	
10MPa	
1000RPM~50000RPM	
0.11~0.66	
16~99	

2. With the exception of the interval between 0.2 and 0.4, the predicted values for the initial positions in the remaining position regression models diverge significantly from the simulated values. The most accurate model for predicting the initial position is the established 4-10-1 neural network model. The 8th International Supercritical CO₂ Power Cycles • February 27 – 29, 2024 • San Antonio, TX, USA

1. The forecasted values from the neural network model align with the simulated values, with error margins staying

18

- casing. The T-C-P flow includes a stable flow section and a Taylor vortex section. The Taylor vortex distribution formed by the T-C-P flow presents as a structurally oblique vortex. turbine shaft can be improved by increasing the flow rate, reducing the rotational speed, increasing the radius
- 1. sCO₂ forms a Taylor-Couette-Poiseuille flow within the clearance between the turbine shaft and the stationary 2. The generation of Taylor vortex in the sCO₂ turbine shaft can be suppressed and the flow stability of sCO₂ in the ratio and reducing the aspect ratio.
- 3. The prediction accuracy of the matrix nonlinear regression model is lower when compared to the 4-10-1 feedforward neural network model. Specifically, the 4-10-1 feedforward neural network model achieves a prediction accuracy within 10% for the initial position.

(Grant No.YSBR-043).

1. The National Natural Science Foundation of China (Grant No.52176090). 2. The Youth Team Support Plan in Basic Research of the Chinese Academy of Sciences

3. The Major national science and technology infrastructure "High-Efficiency and Low-Carbon Gas Turbine Research Facility" (2017-000052-73-01-001569).

The Major National Science and Technology Infrastructure Project of China High-Efficiency and Low-Carbon Gas Turbine Research Facility (HiGT)

Supercritical CO₂ power cycle test rig

INFRASTRUCTURE PROJECT

Cycle parameters

- Max P&T: 24MPa, 600°C
- Mass flow: 8~35kg/s
- Max Output power: 3MWe
- Max Heater power: 8MWt

Rig capability

- **Component testing**
 - Compressor&pump
 - Turbine
 - Heat exchanger
- Cycle testing
 - System performance & dynamics
 - Loop optimization
- The 8th International Supercritical CO₂ Power Cycles February 27 29, 2024 San Antonio, TX, USA

Main Heater

The HiGT-SCO₂ Test Bench Status Update The test bench is expected to be put into operation in September 2024.

View of test bench construction in the plant(Shanghai)

With the principle of full openness and sharing, all scholars and institutions are welcome to visit and cooperate on this test rig.

The 8th International Supercritical CO₂ Power Cycles • February 27 – 29, 2024 • San Antonio, TX, USA

INFRASTRUCTURE PROJECT

Compressor

Electric heater

Turbine

Regenerators

International Conference on Supercritical carbon dioxide Power Cycle and Comprehensive Energy Systems

September 20-24, 2024 Shanghai, China

Topics

Thermodynamics & System Integration of Supercritical Power Cycle Supercritical Fluid Thermal Power Conversion & Equipmen Supercritical Fluid Energy Storage/CCUS Theory and Technology

Timelines

Please contact:

Email: ICSPC2023@163.com

The 8th International Supercritical CO₂ Power Cycles • February 27 – 29, 2024 • San Antonio, TX, USA

Apr 30, 2024 Abstract submission May 15, 2024 Abstract acceptance notification Jun 15, 2024 Full paper submission Jul 15, 2024 Notification of full paper acceptance Aug 15, 2024 Early Bird Registration

Miss Li: 010-82543109/18811727608 (Meeting Affairs), IET, CAS, China

	Supercritical Fluid Flow Heat Trai
nt	Supercritical Composite F
	Supercritical Fluid Chemical &

nsfer & Heat Exchanger

Fluid Power Cycle Materials Technology

The 8th International Supercritical CO₂ Power Cycles

Thank You for your attention!

The 8th International Supercritical CO₂ Power Cycles

• Contact us: guochaohong@iet.cn lufengxiong@iet.cn

