
1 
 

The 8th International Supercritical CO2 Power Cycles Symposium 
February 27 – 29, 2024, San Antonio, Texas 

Paper #27 
Study on the initial position of Taylor vortex for Taylor-

Couette-Poiseuille flow formed by supercritical carbon dioxide 
Fengxiong Lu        Chaohong Guo 
PhD candidate    Associate Researcher 

IET                 IET 
UCAS              UCAS 

Beijing, China        Beijing, China 

Shijie Zhang         Buze Chen 
Researcher     Master degree candidate 

IET                 IET 
UCAS               UCAS 

Beijing, China        Beijing, China 

Bo Wang          Xiang Xu 
Associate Researcher               Researcher 

IET                  IET 
UCAS               UCAS 

Beijing, China          Beijing, China 

 
 
Fengxiong Lu: A current doctoral candidate at the University of Chinese Academy 
of Sciences, primarily focuses on researching the flow and heat transfer 
characteristics of supercritical carbon dioxide within a rotating turbine disk. 
 

 

Chaohong Guo: An associate researcher with the Institute of Engineering 
Thermophysics at the Chinese Academy of Sciences, focuses on investigating the 
heat transfer principles of supercritical carbon dioxide in rotating flow and the 
aerodynamic theory of supercritical carbon dioxide expanders. 
 
 

Shijie Zhang: A researcher at the Institute of Engineering Thermophysics, Chinese 
Academy of Sciences, focuses on analyzing heavy-duty gas turbine performance and 
comprehensive design research, advanced optimization of gas turbine cycles, and 
research into the optimization and integration of distributed energy supply systems. 
Buze Chen：Currently studying for a master degree at the University of Chinese Academy of 
Sciences. The main research direction is turbine wind friction losses. 
Bo Wang: Associate researcher at the Institute of Engineering Thermophysics, Chinese 
Academy of Sciences. The main research direction is the dynamic simulation and control of 
supercritical carbon dioxide power generation systems and new energy power systems. 
Xiang Xu：A researcher at the Institute of Engineering Thermophysics, Chinese Academy of 
Sciences. The main research directions are advanced energy power system research and clean 
and efficient conversion of carbon-containing energy. 
Corresponding Author: Chaohong Guo. email: guochaohong@iet.cn. 

ABSTRACT 
Supercritical carbon dioxide creates a typical Taylor-Couette-Poiseuille flow within the 
annular gap of a rotating turbomachinery. The spatial variation characteristic of Taylor 
vortices generated in this flow is crucial for maintaining the stability of the rotating 
turbomachinery. In order to predict the spatial variation laws of the Taylor vortex 
formed by the supercritical carbon dioxide working fluid in the rotating annular gap, 
this paper combines the actual work process of the supercritical carbon dioxide 
turbine shaft, using Fluent and Matlab tools, investigating the variation law of Taylor 
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vortex within the rotation speed range 0~50000RPM. The results demonstrated that 
the formation of Taylor vortices in this range is significantly influenced by the aspect 
ratio and radius ratio of the annular gap, the axial Reynolds number and the Taylor 
number of the flow. The stability of the rotating flow can be enhanced by reducing the 
aspect ratio, increasing the radius ratio, increasing the axial Reynolds number, and 
decreasing the Taylor number, thereby suppressing the formation of Taylor vortices. 
Finally, in our study, multivariate matrix exponential regression model and a neural 
network algorithm in Matlab have been established to capture the intricate interplay 
between the initial position of the Taylor vortex and critical parameters, namely the 
aspect ratio, radius ratio, axial Reynolds number, and Taylor number. 

INTRODUCTION 
The supercritical carbon dioxide(sCO2) Brayton cycle stands as a crucial technology 
in the realm of future energy transformation and carbon reduction. This significance 
owes itself to its remarkable efficiency, compact engineering, cost-effective operation, 
and robust environmental credentials[1, 2]. At one of the heart of this cycle lies the 
sCO2 turbine[3], which typically operates at around 500°C[4, 5]. Ensuring its reliable 
performance hinges on the prevalent method of employing dry gas sealing technology, 
renowned for its minimal gas leakage and outstanding sealing properties[6, 7]. The 
typical operating temperature range for dry gas seals does not usually exceed 
200°C[7]. Due to the close proximity between the inlet of the sCO2 turbine and the dry 
gas seal, it is essential to cool the turbine rotor within a confined space. This poses a 
significant challenge in the thermal design of the sCO2 turbine rotor[7]. The commonly 
adopted procedure entails the direct utilization of low-temperature supercritical 
carbon dioxide to cool the rotating shaft [8-11]. As illustrated in Figure 1, sCO2 
demonstrates a characteristic Taylor-Couette-Poiseuille(T-C-P) flow within the gap 
between the rotating shaft and the stationary casing[11]. T-C-P flow gives rise to 
evolving Taylor vortices transiently within the rotating annular gap[12]. These Taylor 
vortices induce fluctuations in pressure and velocity[13], leading to the turbine shaft 
experiencing impacts and vibrations. Additionally, this phenomenon results in 
increased power loss during the flow process, ultimately diminishing the mechanical 
efficiency of the sCO2 turbine[14]. Therefore, a comprehensive investigation into the 
formation conditions and evolving patterns of Taylor vortices within the T-C-P flow of 
sCO2 within the turbine shaft is crucial for enhancing the performance of sCO2 
turbines. 

 
Figure 1. Schematic diagram of sCO2 turbine shaft. 
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T-C-P flow is formed by combining axial Poiseuille flow with the basis of Taylor-
Couette(T-C) flow. In 1923, Taylor[12]conducted his initial experiment on the flow 
behavior of a viscous fluid within a coaxially rotating cylinder. His investigation 
revealed that with an increase in the rotational speed of the inner cylinder, the fluid 
within the gap manifested a sequence of distinct flow patterns, including the 
development of Taylor vortices, wavy Taylor vortices, and the modulation of various 
states involving wavy Taylor vortices and spiral turbulent Taylor vortices[15]. Kaye and 
Elgar et al.[16] conducted experimental research to investigate the critical Taylor 
number responsible for inducing Taylor vortices in T-C flow. Marcus et al.[17] 
investigated the propagation speed of a traveling wave at the critical Reynolds 
number, transitioning from Taylor vortices to corrugated Taylor vortices. Compared to 
T-C flow, the introduction of axial flow in T-C-P flow enhances the stability of the 
viscous fluid within the rotating annular gap, thereby diminishing the probability of 
Taylor vortices formation[18],[19]. Werely et al.[20] performed a thorough and 
insightful investigation into the flow characteristics of T-C flow under axial flow 
conditions using experimental methods. Following this, Hwang et al. [21] built upon 
their work with numerical simulations to analyze further and summarize the distinct 
flow patterns. The radius ratio significantly influences the flow characteristics within 
the T-C-P flow [22]. Based on Yuki et al. [23] research findings, a high radius ratio 
yields eight distinct flow states in the T-C-P flow. The vortex structure at a Reynolds 
number of 10000 can be accurately described by the unsteady Reynolds-averaged 
Navier-Stokes k-omega Shear-Stress Transport  model [24]. Working fluids in these 
studies include air, water, and other working medium with constant physical properties. 
However, owing to the dramatic alterations in the physical characteristics of sCO2 as 
working fluid (as depicted in Figure 2, which illustrates the profile in the physical 
properties of sCO2 in temperatures under 10MPa conditions, with data sourced from 
REFPROP), coupled with the megawatt sCO2 turbine shaft speed can reach more 
than 30000 RPM, this leads to an escalation of the Ta for sCO2 T-C-P flow up to 1011, 
and Rea reaching 106, a range that vastly surpasses what is encountered when using 
media like air and water. Thus far, only the studies conducted by Qin et al. [25], Swann 
et al. [10, 11, 26], and Chen et al. [7] have focused on examining the heat transfer 
characteristics of sCO2 T-C-P flow. Qin et al. [25] conducted a numerical simulation 
study focusing on the flow of sCO2 in the annular gap of the bearing. Swann et al. 
integrated the heat exchange conditions involving the coupling of fluids and solids 
within the sCO2 turbine main shafts. They established a test platform for the sCO2 T-
C-P flow and conducted the associated experimental investigations[10, 11, 26]. In 
addressing the cooling challenge associated with the main shaft of a sCO2 turbine, 
Chen et al. [7] and colleagues conducted a study that examined the heat transfer 
characteristics of sCO2 within a high-speed rotating annular gap. This investigation 
considered factors such as aspect ratio, radius ratio, axial Reynolds number, and 
Taylor number, yielding insightful results. Consequently, they derived an empirical 
relationship to describe the heat transfer phenomenon. These studies exclusively 
concentrated on examining the heat transfer properties of sCO2 T-C-P flow without 
delving into exploring the influencing factors and dynamics governing the initial 
position of T-C-P flow. Given that the high-speed rotation of the turbine shaft induces 
a Taylor number as high as 1012 in sCO2 T-C-P flow, it invariably triggers the 
generation of a substantial number of Taylor vortices, subsequently leading to 
undesirable impacts and vibrations on the turbine shaft. Therefore, it becomes 
imperative to meticulously investigate the transition characteristics of Taylor vortices 
within sCO2 T-C-P flow and implement measures to suppress the occurrence of Taylor 
vortices to the fullest extent possible.  
Employing experimental techniques to investigate the initial position characteristics 
of T-C-P flow poses unique challenges. On the one hand, the high-pressure 
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conditions of sCO2 make practical execution exceedingly challenging. The 
emergence of Taylor vortices within the turbine shaft fluid complicates the visibility of 
these vortices during experimentation. Furthermore, the observation and 
measurement of vortex formation and evolution necessitate advanced optical and 
imaging technologies, further adding to the experiment intricacy. On the other hand, 
precise measurement of the T-C-P flow within the high-speed rotating sCO2 turbine 
rotating shaft presents significant challenges in determining flow field parameters 
such as Taylor vortex velocity and vorticity. Additionally, measurement inaccuracies 
and noise can adversely affect the experimental results, impeding high-precision 
attainment. In contrast, employing computational fluid dynamics (CFD) numerical 
simulation methods allows accurate calculation of Taylor vortex formation and 
evolution under varying conditions. This approach enables a detailed analysis of the 
initial position of Taylor vortices and permits extensive parameter studies under 
various conditions and quantitative information about the initial position of Taylor 
vortices can be acquired more expeditiously. Hence, this paper employs numerical 
simulation techniques to investigate the determining factors influencing the initial 
position of Taylor vortex formation in T-C-P flow under high Reynolds and Taylor 
numbers. This exploration aims to establish a theoretical understanding of the initial 
position in T-C-P flow before obtaining reliable experimental data. When dealing with 
extensive datasets derived from simulations and constructing a regression prediction 
model, matrix nonlinear regression and neural network regression methods [27, 28] 
outperform conventional regression techniques in their capacity to handle high-
dimensional data and capture nonlinear relationships. Given this, this paper employs 
these methods to develop a predictive model for the initial position of the Taylor vortex. 
In conclusion, this paper aims to utilize the Matlab programming algorithm to process 
Fluent-calculated data to establish a model for predicting the initial position in the T-
C-P flow of sCO2. This research offers valuable theoretical insights for the design of 
the sCO2 turbine structure. 

 
Figure 2. Profile in physical properties of sCO2 with temperature under 10MPa. 

The structural organization of this paper is as follows: Section 2 presents the physical 
model employed in the study, conducts meshing of the model, validates grid 
independence, and cross-references existing literature data to corroborate the 
simulation results. Section 3 delves into examining the impact of the Ta, Rea,  , and 
  on the initial position for T-C-P flow. In Section 4, Fluent software is employed to 
compute data. Matlab is utilized to develop a computational model program for 
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determining the initial position, yielding a prediction model for the T-C-P flow initial 
position. 

PHYSICAL MODELS  
The schematic illustration in Figure 3 depicts the physical model of a T-C-P flow 
generated by sCO2 within a rotating annular gap. In this diagram, R1 represents the 
inner radius of the rotating annular gap, which rotates at an angular velocity ω around 
the z-axis. At the same time, R2 represents the outer radius of the stationary casing. 
L stands for the axial length of the annular gap, Va signifies the axial flow velocity, and 
δ represents the width of the rotating annular gap. Three essential parameters have 
been introduced to facilitate the accurate quantitative representation of geometric 
factors influencing the flow characteristics of T-C-P: radius ratio 2 1 1( ) /R R R   , gap 
width 2 1R R   , aspect ratio /L   . 
The axial Reynolds number holds a significant physical significance as it represents 
the interplay between inertial and viscous forces in the axial flow of sCO2 within a 
rotating annular gap. The formula for calculating the axial Reynolds number is defined 
as follows: 

a h
a

V DRe


                                         （1） 

The Taylor number holds significance in fluid mechanics as it represents the ratio 
between centrifugal and viscous forces generated during the rotation and flow of sCO2 
within a rotating annular gap. The precise expression for calculating the Taylor 
number is defined as follows: 

                       
2 3

1
2

( / 2)hR DTa 


                                                    （2） 

 
Figure 3. Schematic diagram of the physical model of T-C-P flow. 

Given the compact structure design of the sCO2 turbine, we adopt the rotor diameter 
from Swann et al. [11]. Thus, we define the rotor radius R1 as 12.5 mm[11]. Meeting 
the exact casing assembly requirements, the annular gap width dimension usually 
falls within the 0.2 to 10 mm range. The value of R2 varies with changes in the annular 
gap width. The rotor axial length typically varies between 25 and 150 mm. The 
physical properties of sCO2 were computed using the NIST REFPROP physical 
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property database[29]. 

CALCULATION SETUP AND BOUNDARY CONDITIONS  
The software employed for computational fluid dynamics simulations is Fluent[30].To 
strike a balance between simulation cost and calculation precision, the Reynolds-
averaged equation has been selected as the governing equation for the simulation 
[25]. 
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The k-ω SST model was chosen to close equations[7, 25, 31, 32]. The pressure-
velocity coupling adopts a robust Couple algorithm. The pressure, momentum, and 
energy equations utilize the second-order upwind formula with high precision in 
calculations [30].The residuals have been set as 10-6. The outlet flow and residual 
curves were closely monitored during the iterative calculation process. Once the 
curves stabilized and reached the convergence criteria, the entire simulation was 
considered to have reached convergence conditions, and the calculated values at this 
time were selected for analysis. 
Figure 4 illustrates the computational domain. The outer wall of the rotor shaft serves 
as a rotating boundary, with the inner casing wall playing a stationary adiabatic role. 
The sCO2 fluid flows within the annular gaps created by the revolving shaft and the 
immobile casing. The turbine shaft, designed for megawatt-level operation, rotates 
around a fixed axis at an angular velocity denoted as ω. The specific parameter 
configurations used in the simulation calculations are detailed in Table 3. Given the 
high operational requirements of the megawatt-level sCO2 turbine shaft, specific 
parameters were defined: 

The shaft rotation speed is constrained to 0 ~50000 RPM. 
The outlet pressure is set at 7/10 MPa. 
The inlet temperature fluctuates between 90°C ~110°C. 

 
Figure 4. Schematic diagram of computational domain. 

GRID INDEPENDENCE AND NUMERICAL SIMULATION RELIABILITY 
VERIFICATION 
ICEM is used to partition the structured mesh of the model illustrated in Figure 3. The 
resulting grid, depicted in Figure 5, emphasizes mesh refinement near the rotating 
and stationary walls to ensure a y+ value of 1 or less. 
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Figure 5. Schematic diagram of mesh division. 

To mitigate the influence of the grid numbers on the calculation results, we performed 
grid independence validation across five sets with diverse grid resolutions. Based on 
the model parameters and experimental conditions utilized in Swann et al. [11], the 
simulation employs the parameters outlined in Table 1, and the computed Nu during 
the simulation is illustrated in Figure 6. As shown in Figure 6, the average errors 
between simulated Nu when the number of grids is 4390 10  , 4520 10  , and 

4573 10  are 1.87% and 0.74%, respectively. The simulation calculation opts for a 
grid number of 4573 10   to meet accuracy criteria while minimizing computational 
time. 

Table 1. Model parameters and calculation conditions [11] 
Parameter Value 

R1 12.5mm 
Annulus height 4mm 

L 136mm 
ω 0~25000RPM 
Ts 50~150℃ 

SCO2 temperature 50℃ 
SCO2 pressure 10MPa 

SCO2 Mass Flow 0.015kg/s~0.24kg/s 
 

 

Figure 6. Grid independence verification. 
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Swann et al.[11] used experimental data to summarize the correlation of Nu under 
10MPa working conditions：  

3 0.848.2 10 effNu Re                                                           （6） 

2 2
a w h

eff

V V D
Re





                                                             (7) 

To validate the dependability of the numerical simulation algorithm employed, we 
utilize the model parameters and boundary conditions detailed in Table 1. We operate 
four distinct algorithms to compare the computed Nu against the Nu derived from the 
formula (6) outlined in the experimental data. The comparative results are 
enumerated in Table 2. 

Table 2. Numerical simulation algorithm reliability verification (Nu) 

Ts 
/K 

Formula (6) 
Calculated 

k-ω SST k-ω Standard k-ε RNG k-ε Realizable 
Simula

tion 
error 

% 
Simula 

tion 
error 

% 
Simula 

tion 
error 

% 
Simula

tion 
error 

% 
343
.15 

2418.13 2322 
.37 

-3.96 2245 
.05 

-7.16 2209 
.76 

-8.62 2330 
.21 

-3.64 

353
.15 

2201.70 2249 
.60 

2.18 2157 
.27 

-2.02 2124 
.85 

-3.49 2129 
.23 

-3.29 

 
Based on the data presented in Table 2, when operating at a pressure of 10MPa and 
with varying temperatures of the rotating shaft, it is observed that, in comparison to 
other turbulence models, the error between Nu value calculated using k-ω SST and 
Nu computed using equation (6) is within ±10%. Hence, we can conclude that the 
chosen k-ω SST computational model is dependable for our numerical simulations. 
RESULTS AND DISCUSSION 
Characteristics of Taylor Vortex formed by sCO2 
Figures 7 and 8 depict contours illustrating axial and radial velocity distributions (with 
a mass flow rate of 0.008kg/s) at a rotational speed of 200rad/s. Analyzing the axial 
velocity distribution in Figure 7, it is evident that Poiseuille flow fails to generate Taylor 
vortices across the entire cross-section. In the inlet section, the velocity undergoes a 
gradual transition from the wall towards the center of the cross-section. In contrast, 
with T-C flow, Taylor vortices emerge at the inlet and uniformly propagate downstream. 
The stability of T-C-P flow in the inlet section is maintained by the axial flow, mitigating 
the development of Taylor vortices. However, as the axial distance increases, 
propelled by the pressure differential between the inner and outer walls and the 
centrifugal force generated by the rotation of the inner wall, the sCO2 flow within the 
rotating annular gap becomes unstable, leading to the formation of a Taylor vortex. 
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Figure 7. Axial velocity contours of different flows at X=0 in the YOZ plane. 

The radial velocity distribution exposes distinct features of the Taylor vortices induced 
by the sCO2 T-C flow. These vortices are meticulously organized within the cross-
sectional area, exhibiting a periodic alteration between positive and negative radial 
velocity values. The resulting Taylor vortex configuration is oriented along the radial 
axis, manifesting an elliptical pattern with a central core and an outward extension 
along the vortex core. The sCO2 fluid exhibits varying velocities within this vortex 
structure. The core at the center experiences rapid fluid motion, giving rise to a high-
speed vortex core region, gradually diminishing as it moves from the core towards the 
periphery. In contrast, the velocity near the boundary of the Taylor vortex is relatively 
slow, eventually approaching zero. This velocity distribution vividly illustrates the 
rotational movement of the sCO2 fluid within the Taylor vortices, depicting the vortex 
motion. In the case of T-C-P flow, axial flow prevents the formation of a Taylor vortex 
structure in the inlet section. However, as the sCO2 flows further along its path, a 
vortex structure gradually emerges, characterized by a tilted configuration. 

 
Figure 8. Radial velocity contours of different flows at X=0 in the YOZ plane. 

Figure 9 depicts the streamlines comparison between the T-C and T-C-P flow. In the 
case of T-C flow, the streamlines create numerous concentric annular closed patterns, 
giving rise to multiple distinct annular vortex structures. Within these vortexes, the 
fluid circulates circumferentially, spiraling between the rotating and stationary walls. 
The outer walls also interact, resulting in a circumferential spiral flow. Conversely, for 
the T-C-P flow, the streamlines are influenced by the rotating wall and the Poiseuille 
flow, leading to the apparent formation of a single spiral vortex. This two-dimensional 
spiral flow occurs along the axis and between the inner and outer walls during 
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circumferential rotation. 

 
Figure 9. Comparison of streamlines between T-C flow and T-C-P flow. 

Research on factors affecting the initial position of the Taylor vortex 

In the constantly rotating annular gap, the Taylor vortex's initial position is where the 
first Taylor vortex emerges during an unstable secondary flow. This is depicted in 
Figure 8 on the radial velocity contours, showing where the first clear vortex emerges. 
One of its defining characteristics, as illustrated in Figure 10, is that along the axial 
flow direction, the radial velocity typically undergoes periodic fluctuations, alternating 
between positive and negative values. The initial position of the Taylor vortex is the 
initial position when these alternating periodic changes in radial velocity begin or 
when the first continuous oscillations between positive and negative radial velocities 
occur. In determining the location of this initial position of the Taylor vortex, it is 
selected by taking a comprehensive look at the radial velocity distribution contours 
and the profile of radial velocity fluctuations.  

 
Figure 10. Comparison of radial velocity fluctuation profiles of T-C/T-C-P flow. 

To investigate the evolving characteristics of the Taylor vortex initial position in smooth 
wall conditions concerning variations in inlet flow rate, rotational speed, aspect ratio, 
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and radius ratio and to formulate a comprehensive understanding of the governing 
principles, we established four distinct sets of analog number, as detailed in Table 3. 
Throughout these simulations, the radius of the rotating wall, sCO2 inlet temperature, 
and working pressure remain constant. However, the inlet flow rate (converted into 
Rea), Ta,   , and  （Precisely, only the gap width was adjusted, while other 
parameters, such as length, axial flow velocity, and rotation speed remain constant）
were altered. Table 3 lists the values and ranges of parameters.  

Table 3. Detailed parameter setting table 
Analog 
number 

1 2 3 4 

R1 12.5mm 
R2 16.5mm 16.5mm 13.75mm~21mm 16.5mm 
Tin 110℃ 
P 10MPa 

Rea 3 56.6 10 ~ 2.0 10   49.6 10  4 53.0 10 ~ 2.0 10   49.6 10  
Ta 115.48 10  120 ~ 1.52 10  10 123.3 10 ~ 6.24 10  117.04 10  
η 0.32 0.32 0.11~0.67 0.32 
г 34 34 16~108 16~99 

The effect Rea on the initial position of the Taylor vortex 

Based on the analog number 1 condition in Table 3, the geometric model utilized for 
this simulation remains constant. By calculation formula (1) for the Rea, altering the 
inlet flow rate means adjusting the Rea. When the inlet flow rate is raised, Rea 
correspondingly increases. This results in a shift of the Taylor vortex initial position, 
as depicted in Figure 11. This observation is further corroborated by the axial velocity 
contours at X=0 in the YOZ plane, as seen in Figure 12. When the Rea is low, the 
initial position of Taylor vortices near the inlet of the flow channel. This occurs due to 
a combination of factors. Firstly, the inertial forces are relatively weak, while the 
viscous forces are comparatively strong. In addition, the sCO2 fluid is subject to 
significant centrifugal effects due to the rotation of the inner wall. The axial flow 
velocity exceeds the axial velocity component of the Taylor vortex, effectively 
suppressing the formation of the Taylor vortex. Simultaneously, the robust viscous 
forces make the fluid more susceptible to dissipation within the rotating annular gap. 
This viscous dissipation leads to the gradual dissipation of energy, resulting in a 
reduction in vortex intensity. Consequently, the development of Taylor vortices 
progresses from a densely packed formation to a more sparsely distributed uniform 
pattern along the flow direction. In this scenario, the dominant force shaping the flow 
is the centrifugal force from the rotation, leading to a weakened flow stability of sCO2 
in the rotating annular gap.  
As the Rea increases, the axial flow within the rotating annular gap strengthens, and 
the initial position of the Taylor vortex shifts closer to the outlet of the flow channel. 
Since the Taylor vortex commences formation near the outlet, it has limited space to 
develop fully. The Taylor vortices are densely distributed at this stage.  
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Figure 11. Taylor vortex initial position changes with Rea 

This demonstrates that boosting the inlet flow rate of the T-C-P flow can enhance the 
stability of the flow within the rotating annular gap and effectively inhibit the formation 
of Taylor vortices in this configuration. 

 
Figure 12. Taylor vortex axial velocity contours at X=0 in the YOZ plane at different Rea 

The effect of Ta on the initial position of the Taylor vortex 

Based on the analog number 2 condition in Table 3, various inner wall rotation speeds 
have been established to investigate and analyze the influence of Ta on the initial 
position of the Taylor vortex.  Figures 13 and 14 depict the profile curves of the Taylor 
vortex initial position with varying Ta and the radial velocity contours at X=0 in the 
YOZ plane for Ta values of 113.22 10 , 114.44 10 , 115.85 10 , and 117.46 10 . As the 
Ta increases, the centrifugal effect of the rotating inner wall on sCO2 is enhanced, 
and the initial position of the Taylor vortex gradually approaches the inlet of the 
annular gap. Based on the distinctive radial velocity contours of Taylor vortices formed 
under various Ta conditions, it becomes evident that the inner wall rotational 
centrifugal force propels the sCO2 fluid towards the outer wall. Simultaneously, due 
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to the impact of axial flow, the resulting Taylor vortex exhibits an oblique distribution 
aligned with the direction of the flow. The Taylor vortex is influenced by two primary 
factors, namely wall rotation and axial motion, due to the presence of axial flow. The 
impact of the process is particularly pronounced near the rotating wall, leading to the 
formation of an apparent vortex on that side. The radial velocity, driven by the 
centrifugal force, propels the fluid away from the center of rotation, resulting in a 
vigorous radial motion. Consequently, this fluid portion manifests a distinct Taylor 
vortex along one side of the rotating wall. In contrast, near the stationary boundary, 
the effect of rotation is diminished, while the influence of axial flow becomes more 
prominent. Axial flow directs the fluid toward its flow, thereby suppressing radial 
motion. As a result，the Taylor vortex on the fixed wall side exhibits a larger shape 
than the Taylor vortex on the rotating side at the YOZ section. 

 
Figure 13. Taylor vortex initial position changes curve with Ta  

 
Figure 14. Radial velocity contours at X=0 in the YOZ plane at different Ta 

This demonstrates that elevating the rotational speed of the inner wall results in 
heightened instability for the T-C-P flow, an augmented quantity of Taylor vortices, 
and a closer proximity of the initial position of the Taylor vortex to the inlet of the 
annular gap. 

The effect of η on the initial position of the Taylor vortex 

Based on the analog number 3 condition in Table 3, alter the η to investigate its impact 
on the initial position of the Taylor vortex. Figures 15 and 16, respectively, show the 
3D diagram of the initial position of the Taylor vortex as a function of the η and the 
axial velocity contours at X=0 in the YOZ plane when the η is 0.11, 0.18, 0.33 and 
0.52. Reducing the η means a decrease in the width of the annular gap. With this 
decreasing η, the fluid, driven by centrifugal force, moves towards the stationary outer 
wall with a specific radial velocity. This radial velocity gradually diminishes to zero, 
causing a simultaneous rise in pressure. Due to the narrow gap, significant velocity 
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and pressure gradients emerge between the inner and outer walls. These gradients 
facilitate the easier rotation of the sCO2 fluid, and the initial position of the Taylor 
vortex moves closer to the inlet of the flow channel. As η increases, the widening of 
the rotating annular gap is amplified, allowing additional space for the sCO2 fluid to 
flow. This, in turn, diminishes the constraining influence of both the inner and outer 
walls on the movement of the sCO2 fluid, resulting in a less pronounced formation of 
the Taylor vortex. The vortex exclusively emerges on the side of the rotating wall, with 
its initial position located nearer to the flow channel outlet, thereby enhancing the 
stability for T-C-P flow. 

 

Figure 15. Initial position diagram of Taylor vortex composed of different г and η 

 

Figure 16. Taylor vortex axial velocity contours at X=0 in the YOZ plane at different η 

Therefore, keeping the streamwise length of the T-C-P flow constant while 
maintaining the same axial flow velocity and rotational speed, increasing η will 
effectively suppress the formation of Taylor vortices. 

The effect of on the initial position of the Taylor vortex 
Based on the analog number 4 condition in Table 3, Modify г to investigate its 
influence on the alteration of the initial position of the Taylor vortex. Figures 17 and 
18, respectively, show the Taylor vortex position profile curve with г and the axial 
velocity contours at X=0 in the YOZ plane when the г is 20, 22, 43 and 50. As г 
increases, the initial relative position z/L of the Taylor vortex diminishes progressively. 
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In contrast, the absolute location Z of the Taylor vortex remains virtually constant 
across various г. When г reaches 50, the distribution of Taylor vortices experiences 
a transition from a dense configuration to a sparser one. This occurs due to the 
heightened influence of viscous forces when sCO2 fluid flows within a large г. Viscous 
dissipation leads to energy loss, causing a weakening of the vortices, resulting in a 
gradual decrease in the density of Taylor vortices. Consequently, the distribution of 
formed Taylor vortices shifts from high vortex density to one characterized by sparser 
vortices. Conversely, as г decreases gradually, the distribution of formed Taylor 
vortices becomes increasingly uniform.  

 

Figure 17．Taylor vortex initial position profile curve with г 

 
Figure 18. Taylor vortex axial velocity contours at different г 

Hence, one can infer that a rise in г will undermine the stability of the T-C-P fluid flow, 
thereby bringing the z/L of the Taylor vortex closer to the inlet of the T-C-P flow. 

Taylor vortex initial position prediction model 
Multivariate matrix exponential regression model construction 
Referring to the heat transfer correlations outlined in heat transfer literature [33], the 
versatility of the power exponential function is widely recognized in engineering. It 
offers a straightforward parameter interpretation and exhibits robust data-fitting 
capabilities. To forecast the initial position of the Taylor vortex generated by sCO2 T-
C-P flow precisely, it offers valuable insights for determining the structural parameters 
of the sCO2 turbine shaft seal. When operating at 10MPa, based on the variable range 
combinations detailed in Table 3. The correlations for Rea, Ta, η and г were 
summarized as follows： 
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31 2 4/ = xx x x
az L ARe Ta                                                       （8） 

Apply the natural logarithm to both sides of the equation and rearrange it into the 
following expression: 

1 2 3 4ln( / ) ln ln ln( )+ ln( )+ ln( )+ ln( )az L A e x Re x Ta x x             （9） 

In numerical simulation, a group of ( , , , )aRe Ta    can uniquely determine a /z L . For 
the numerical simulation conditions, the logarithm with base e forms the matrix B and 
Y. 
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，where n=560. 

Take the logarithm of the unknown numbers A, x1, x2, x3, and x4 with base e to form a 
matrix T

1 2 3 4(ln , , , , )X A x x x x .Bring 560 data points into matrix B, X and Y to form a 
system of equations [34]: 

BX Y                                                            （10） 
At this juncture, the quantity of equation systems exceeds the number of unknown 
variables by a significant margin ( ( , ) ( )R B Y R B ). The system of equations (9) has 
no solution [35]. To establish a suitable correlation for predicting the initial position of 
the Taylor vortex, it becomes imperative to derive a solution for the system of 
equations. Consequently, this involves identifying a matrix X that minimizes the error 
between BX and Y to the greatest extent possible. 
Define error function E(X) 

2
1 1 2 2 3 3 4 4

1
( ) [ln( ) ln ln((Re ) ) ln(( ) ) ln(( ) ) ln(( ) ) ln(( / ) )]

n

a i i i i i
i

E X A e x x Ta x x z L


       

, n=560.                                                                                                                     (11) 

To minimize the value of E(X), it is equivalent to finding X such that 
2( ) || ||E X BX Y   smallest [36]，According to linear equations and matrix theory, 

combined with the characteristics of correlation (9), E(X) can be transformed into: 
2 T( ) || || ( ) ( )E X BX Y BX Y BX Y       

       T T T T T2B X BX B X Y YY                                          （12） 

Because E(X) is a function of X, X under the condition of 
( ) 0E X
X





  minimizes the 

value of E(X). 
T T( ) 2 2 0E X B BX B Y

X


  


                                     （13） 

Simplifying to get the least squares solution is 
1( )T TX B B B Y                                                  （14） 

In the Mtatlab software, by writing a program to solve the above (8) ~ (14) matrix 
equations [37, 38]，after calculation, the following relationship was obtained: 

7 0.5668 0.7452 2.1828 0.4028/ 1.6101129 10 ( ) ( ) ( ) ( )az L Re Ta               （15） 

The applicable scope of correlation 14 is specified in Table 3. Based on equation (14) 
provided above, one can deduce that to suppress the formation of the Taylor vortex, 
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specific actions such as enhancing the inlet flow rate and lowering the rotational 
speed of the shaft can effectively restrain. It is important to note that because equation 
(14) provides an approximate solution, a discrepancy exists between the Taylor vortex 
initiation's actual position and the formula's prediction. This discrepancy may be 
significant at specific locations, rendering the multivariate exponential regression 
model unsuitable for extensive and high-precision forecasting.  

Construction of a Neural Network Model for the Initial Position of the 
Taylor Vortex 
Determination of Taylor vortex initial position by neural network model 
The neural network model addresses the limitations of the initial position prediction 
model (14). Neural network regression prediction leverages deep learning technology 
to autonomously capture intricate nonlinear relationships from extensive datasets 
autonomously, rendering it more flexible and accurate than conventional regression 
prediction techniques [39] [40]. This approach has proven effective in sCO2 heat 
transfer [41] and has also been applied to the study of T-C flow[42]. In the neural 
network model, signals are forward-propagated, and errors are backward-propagated. 
The input layer of the neural network model comprises Rea, Ta, г, and η, with a fixed 
count of 4 neurons in this layer. The output layer represents the initial position of the 
Taylor vortex. We randomly assign 70% of the 560 data sets for the training set, 15% 
for the validation set, and 15% for the test set. Figure 19 illustrates a schematic 
representation of the designed structure of the neural network model. 

 
Figure 19. Schematic diagram of Taylor vortex initial position neural network structure. 

The Levenberg-Marquardt backpropagation algorithm exhibits excellent convergence 
characteristics, combining the advantages of the Newton and gradient methods. It 
yields reliable results, particularly well-suited for training tiny to medium-sized neural 
networks[43, 44]. Consequently, the Levenberg-Marquardt algorithm has been 
chosen for computation. The size of the hidden layer plays a crucial role in shaping 
the neural network model and is determined using the following empirical formula[45]. 

k p q a                                                         （16） 

Within the range of hidden layers from 6 to 12, the correlation coefficient R was used 
to determine the appropriate number of hidden layers. After a comprehensive 
comparison of the R values calculated by the neural network models of different 
hidden layers, it is found that when the number of hidden layers is set to 10, the 
predicted variable and the expected variable are the correlation coefficient between 
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them is closer to 1. For this reason, the hidden layer is selected as 10, and the neural 
network model established is the 4-10-1 model. The mean square error (MSE) was 
selected as the performance function to predict the accuracy of the initial position 
model. MSE represents the average sum of squares of the difference between the 
predicted value of the initial position and the simulated value, which includes both the 
variance and the bias. The calculation formula is: 

   2

1

1 [( / ) ( / ) ]
n

i i
i

MSE z L z L
n 

                                          （17） 

Determination of initial position neural network model parameters 
As indicated in Table 4, a feedforward neural network with a regression function is 
employed. The results reveal a significant nonlinear relationship between the input 
neurons and the output outcomes. Therefore, the activation function for the hidden 
layer is the nonlinear hyperbolic tangent S-shaped function known as Tansig. To 
directly convert the output values into the initial position for predictive purposes, the 
activation function for the output layer is selected to be the linear transmission Purelin 
function. The combination of Tansig-Purelin offers rapid training and a reduced risk of 
overfitting and is particularly well-suited for regression prediction. Set the iteration 
limit to 10,000 and the performance threshold to 0.0001. The configuration of the 
learning rate significantly impacts the training pace and prediction precision of the 
Taylor vortex initial position neural network model. After experimenting with various 
learning rates, a value of 0.001 was ultimately chosen [46]. 

Table 4. Taylor vortex initial position neural network prediction model settings 
Parameter  Set up 

neural network model feedforward backpropagation 
number of iterations 10000 
performance value 0.0001 

learning rate 0.001[47] 
algorithm function Levenberg-Marquardt 
transfer function Tansig-Purelin[48, 49] 

performance function MSE 

Initial position neural network model calculation results 
A total of 560 datasets were utilized for the training process. Following the 445th 
iteration cycle, the training and configuration errors stabilized, indicating a converged 
state. The training program was halted at this point, and Figure 20 depicts the Mean 
Squared Error (MSE) curve. The established neural network model reached an 
average error value of 5.3521E-5 at this crucial juncture. 

 
Figure 20. Neural network model training performance profile. 
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Figure 21 presents the error histogram post-training. The graph shows that the 
deviation between the output and the target (simulated value) for most data sets is 
nearly zero. The 4-10-1 neural network model has been established to achieve 
precise forecasts of initial position. Correlation analyses are separately performed on 
the training, validation, and test datasets. Four sets of linear regression plots are 
displayed in Figure 22. Figure 22 displays four sets of linear regression plots, 
revealing a close alignment of data points with the regression line. Specifically, the R 
for the training dataset is 0.99849, the validation dataset is 0.9995, and the test 
dataset is 0.99854. Cumulatively, the R-value across all datasets is 0.99867, 
demonstrating the accurate initial position prediction capability of the established 4-
10-1 neural network model. 

 

Figure 21. Taylor vortex initial position prediction model error histogram.

 
Figure 22. Correlation coefficient diagram of data set. 
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Comparative analysis of Taylor vortex initial position prediction models 
To assess and compare the predictive accuracy of the multivariate exponential 
regression model for the initial position and the neural network model, we adhered to 
the parameter design conditions outlined in Table 5. We then contrasted the 
forecasted values produced by the established multivariate matrix exponential 
regression model for the initial position and the neural network model with the 
simulated values, as illustrated in Figure 23. Evidently, the neural network model 
closely aligns with the simulated values, exhibiting errors of less than 10%. Within the 
range of initial positions from 0.2 to 0.4, the discrepancy between the predicted values 
from the multivariate matrix exponential regression model and the simulated values 
remains within the 10% margin. However, at other relative positions, the disparity 
between the predicted and simulated values of the initial position regression model is 
considerably more pronounced. Therefore, the optimal model for predicting the initial 
position of the Taylor vortex is the established 4-10-1 neural network model. 

Table 5. Parameter settings  
Parameter  Value 

R1 12.5mm 
R2 16.5mm 
Tin 110℃ 
P 10MPa 
ω 14000RPM~50000RPM 
η 0.11~0.66 
г 16~99 

 

 
Figure 23. Comparison of initial position prediction values for different model. 

CONCLUSIONS 
This paper presents a comprehensive calculation and analysis of the initial position 
in the Taylor vortex, which is generated by the flow of sCO2 within the turbine shaft 
and casing. The primary findings can be summarized as follows: 
（1）  sCO2 exhibits a typical T-C-P flow pattern within the turbine shaft and casing. 

Compared with the T-C flow, due to the influence of axial flow, the T-C-P flow 
includes a stable flow section and a Taylor vortex section; the Taylor vortex 
distribution formed by the T-C flow has a central core and extends outward 
along the vortex core. Taylor vortex distribution formed by T-C-P flow presents 
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a structurally oblique vortex. 
（2） The generation of the Taylor vortex can be suppressed, and the stability of T-

C-P flow improved by increasing the flow rate, reducing the rotational speed, 
increasing the radius ratio, and reducing the aspect ratio. 

（3） A matrix nonlinear regression model and a 4-10-1 feedforward neural network 
model for predicting the Taylor vortex initial position were established with the 
Matlab program. A comparative analysis of the two models found that the 
matrix nonlinear regression model prediction accuracy is lower than the 
prediction accuracy of the 4-10-1 feedforward neural network model. The 
prediction accuracy of the 4-10-1 feedforward neural network model for the 
initial position is within 10%. 
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Nomenclature 
 
Rea    Axial Reynolds number            Ta      Taylor number 
R1    Shaft radius        R2      Casing radius 
L    Axial length of rotating shaft                 Va       Inlet velocity 
Dh    Hydraulic diameter             ω       Shaft rotation speed 
Vw    Velocity of the rotating wall            ν       Kinematic viscosity of sCO2 

μ    Viscosity of sCO2                   η          Radius ratio 
г    Aspect ratio          δ       Annular gap width 
n     Sample size               MSE   Mean square error 
k    Hidden layer size               p        Number of input layer nodes 
q        Number of output layer nodes                 Reeff    Effective Reynolds number 
Nu    Nusselt number                                            P        Pressure 
λ        Thermal conductivity of sCO2                                     Cp      Specific heat capacity of sCO2  
ρ        Density of sCO2                                                                     Tin  sCO2 inlet temperature 
Ts    Shaft temperature                                            RPM      Revolutions Per Minute 
T-C-P   Taylor-Couette-Poiseuille             T-C        Taylor-Couette 
a          Adjustment constant in the range of 1 ~10 
( / )iz L    Numerical simulation value     
( / )iz L    Predicted value of the neural network model 
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