A method to develop centrifugal compressor performance maps for off-design and dynamic simulation studies of sCO₂ cycles

Presented by Colin Francois du Sart (<u>Colin.duSart@uct.ac.za</u>), University of Cape Town Co-authored by Pieter Rousseau & Ryno Laubscher, Stellenbosch University

SOLAR RESOURCE MAP DIRECT NORMAL IRRADIATION

This map is published by the World Bank Group, funded by ESMAP, and prepared by Solargis. For more information and terms of use, please visit http://globalsolaratlas.info.

Global direct normal irradiation map, from The World Bank (2019)

Paper #20

Schematic of a sCO2-CSP plant with TES, from Mehos et al. (2017)

Paper #20

Paper #20

8th International sCO₂ Power Cycles Symposium • February 27 – 29, 2024 • San Antonio, TX, USA

Paper #20

Paper #20

8th International sCO₂ Power Cycles Symposium • February 27 – 29, 2024 • San Antonio, TX, USA

Paper #20

8th International sCO₂ Power Cycles Symposium • February 27 – 29, 2024 • San Antonio, TX, USA

Paper #20

8th International sCO₂ Power Cycles Symposium • February 27 – 29, 2024 • San Antonio, TX, USA

		Dostal et al. (2004)	Carstens (2007)	Seidel (2010)	Kulhanek & Dostal (2011a)	Turchi et al. (2013)	Dyreby (2014)	Neises & Turchi (2014)	Padilla et al. (2015)	Osorio et al. (2016)	Binotti et al. (2017)	Luu et al. (2017a)	Luu et al. (2017b)	Neises & Turchi (2019)	Thanganadar et al (2020)	Correa et al (2021)	Yang et al (2023)
	Steady-state	х			х	х	х	х	х							х	
Study type	Quasi-steady			х						х	x	x		х	x		х
	Dynamic		х										х				
	Isentropic			x	х	x		x	x	x	х	x		x	x		
	Dyreby's method/ curve fit						x						х		x	x	х
Turbomachinary models	Performance maps by others/ software	x	х														
	Tailor-made design and maps																
	Inertia effects																
	Off-design performance						х										х
Off-design	Off-design control	x														x	
performance, control and	Daily simulation									x		x	x				
simulations	Annual simulation			х							х				x		
	Fast transients		x														

		Dostal et al. (2004)	Carstens (2007)	Seidel (2010)	Kulhanek & Dostal (2011a)	Turchi et al. (2013)	Dyreby (2014)	Neises & Turchi (2014)	Padilla et al. (2015)	Osorio et al. (2016)	Binotti et al. (2017)	Luu et al. (2017a)	Luu et al. (2017b)	Neises & Turchi (2019)	Thanganadar et al (2020)	Correa et al (2021)	Yang et al (2023)
	Steady-state	х			х	х	х	х	х							х	
Study type	Quasi-steady			х						х	х	х		х	х		х
	Dynamic		x										х				
	Isentropic			х	х	х		х	х	х	х	х		х	х		
	Dyreby's method/ curve fit						х						х		х	х	х
Turbomachinary models	Performance maps by others/ software	х	х														
	Tailor-made design and maps																
	Inertia effects																
	Off-design performance						х										х
Off-design	Off-design control	х														х	
performance, control and	Daily simulation									х		х	х				
simulations A	Annual simulation			х							x				х		
	Fast transients		х														

Literature review

	SUC
nbosch	Supercritical CO ₂
ERSITY VESITHI	Symposium
RSITET	- J

		Dostal et al. (2004)	Carstens (2007)	Seidel (2010)	Kulhanek & Dostal (2011a)	Turchi et al. (2013)	Dyreby (2014)	Neises & Turchi (2014)	Padilla et al. (2015)	Osorio et al. (2016)	Binotti et al. (2017)	Luu et al. (2017a)	Luu et al. (2017b)	Neises & Turchi (2019)	Thanganadar et al (2020)	Correa et al (2021)	Yang et al (2023)
	Steady-state	x			х	х	х	х	x							х	
Study type	Quasi-steady			х						х	х	х		x	х		x
	Dynamic		х										х				
	Isentropic			х	х	х		х	х	х	х	х		х	х		
	Dyreby's method/ curve fit						х						х		x	x	x
Turbomachinary models	Performance maps by others/ software	x	х														
	Tailor-made design and maps																
	Inertia effects																
	Off-design performance						х										x
Off-design	Off-design control	x														х	
performance, control and	Daily simulation									х		х	х				
simulations	Annual simulation			x							х				х		
	Fast transients		х														

		Dostal et al. (2004)	Carstens (2007)	Seidel (2010)	Kulhanek & Dostal (2011a)	Turchi et al. (2013)	Dyreby (2014)	Neises & Turchi (2014)	Padilla et al. (2015)	Osorio et al. (2016)	Binotti et al. (2017)	Luu et al. (2017a)	Luu et al. (2017b)	Neises & Turchi (2019)	Thanganadar et al (2020)	Correa et al (2021)	Yang et al (2023)
	Steady-state	х			х	х	х	х	х							х	
Study type	Quasi-steady			х						х	х	х		х	х		х
	Dynamic		х										х				
	Isentropic			х	х	х		х	х	х	х	х		х	х		
	Dyreby's method/ curve fit						х						х		х	х	х
Turbomachinary models	Performance maps by others/ software	х	х														
	Tailor-made design and maps																
	Inertia effects																
	Off-design performance						х										х
Off-design	Off-design control	х														х	
performance, control and simulations F	Daily simulation									х		х	х				
	Annual simulation			x							x				x		
	Fast transients		x														

		Dostal et al. (2004)	Carstens (2007)	Seidel (2010)	Kulhanek & Dostal (2011a)	Turchi et al. (2013)	Dyreby (2014)	Neises & Turchi (2014)	Padilla et al. (2015)	Osorio et al. (2016)	Binotti et al. (2017)	Luu et al. (2017a)	Luu et al. (2017b)	Neises & Turchi (2019)	Thanganadar et al (2020)	Correa et al (2021)	Yang et al (2023)
	Steady-state	х			х	х	х	х	х							х	
Study type	Quasi-steady			х						х	х	х		х	х		х
	Dynamic		х										х				
	Isentropic			х	х	х		x	х	х	x	x		х	x		
	Dyreby's method/ curve fit						x						х		x	х	х
Turbomachinary models	Performance maps by others/ software	x	х														
	Tailor-made design and maps																
	Inertia effects																
	Off-design performance						х										х
Off-design	Off-design control	x														x	
performance, control and simulations F	Daily simulation									х		x	х				
	Annual simulation			x							х				x		
	Fast transients		x														

Dyreby's method

SNL compressor performance map, from Wright et al. (2010)

Paper #20

8th International sCO₂ Power Cycles Symposium • February 27 – 29, 2024 • San Antonio, TX, USA

Dyreby's method

 $\eta^* = -0.7069 + 168.6\phi^* - 8089\phi^{*2} + 182725\phi^{*3} - 1.638e^6\phi^{*4}$

 $\psi^* = 0.04049 + 54.7\phi^* - 2505\phi^{*2} + 53224\phi^{*3} - 498626\phi^{*4}$

Head and efficiency correlations, from Dyreby (2014)

Paper #20

KAIST-TMD:

- Private 1D mean-line based tool to size centrifugal compressors and generate performance maps.
- Developed by Lee (2016) for the design of sCO₂ centrifugal compressors.
- Used by collaborators i.e., Cho et al. (2019) and Jeong et al (2020) for compressor-focused studies.

KAIST-TMD:

- Private 1D mean-line based tool to size centrifugal compressors and generate performance maps.
- Developed by Lee (2016) for the design of sCO₂ centrifugal compressors.
- Used by collaborators i.e., Cho et al. (2019) and Jeong et al (2020) for compressor-focused studies.

AlFa CCD:

- Private 1D mean-line based tool to size centrifugal compressors and generate performance maps.
- Developed by Ameli et al (2018) for the design of $\frac{1}{2}$ centrifugal compressors.

1D mean-line codes

Compared to this work:

- Fewer compressor components considered.
- Models not fully documented.
- Different correlation sets applied.
- Verification results leave room for improvement.

1D mean-line codes

Verification results, from Ameli et al. (2018)

Verification results, from Lee (2016)

Slide 19

SNL compressor wheel, from Wright et al. (2010)

Paper #20

8th International sCO₂ Power Cycles Symposium • February 27 – 29, 2024 • San Antonio, TX, USA

Specification	Units	Value
Known, from Wright et al. (2010)		
Number of full blades	-	6
Number of splitter blades	-	6
Number of vaned diffuser channels	-	17
Blade angle at impeller inlet	0	50.0
Blade angle at impeller exit (backswept)	0	50.0
Vaned diffuser angle at diffuser inlet	0	71.5
Hub radius	mm	2.54
Shroud radius	mm	9.37
Impeller exit radius	mm	18.68
Tip clearance	mm	0.254
Blade thickness	mm	0.76
Blade height at exit	mm	1.71
Nominal mass flow rate	kg/s	3.53
Total pressure at inlet	kPa	7687
Total temperature at inlet	°C	32.15
Assumed		
Ratio of splitter blade to full blade meridional length	-	0.5
Blade angle at impeller inlet (at hub, mean position and shroud)	o	50.0
Vaned diffuser inlet diameter	mm	40
Vaned diffuser exit diameter	mm	75
Vaned diffuser height	mm	1.71
Collector exit diameter	mm	29.89

Images of SNL compressor, from Wright et al. (2010)

Verification results, test data from Wright et al. (2010)

Sizing method

Paper #20

8th International sCO₂ Power Cycles Symposium • February 27 – 29, 2024 • San Antonio, TX, USA

Initial sizing

Marked up specific diameter-speed diagram, original image from Balje (1981)

Paper #20

1D model inputs

Specification	Units	LPC	HPC
Design criteria			
Mass flow rate	kg/s	397	397
Total pressure at inlet	kPa	7353	9768
Total temperature at inlet	°C	45	45
Total pressure ratio	-	1.356	2.560
Total-to-total efficiency (target)	%	89	89
Fixed variables			
Number of full blades	-	19	19
Number of vaned diffuser channels	-	28	28
Nominal design speed	rpm	9000	9000
Optimised variables			
Hub to shroud radius ratio	-	[0.3,	0.6]
Shroud to tip radius ratio	-	[0.35,	0.65]
Vaned diffuser inlet to impeller exit radius ratio	-	[1.025,	1.075]
Vaned diffuser exit to inlet radius ratio	-	[1.25,	1.75]
Inlet swirl angle	0	[0,	35]
Blade angle at impeller inlet (mean position)	0	[25,	50]
Blade angle at impeller exit (backswept)	0	[25,	50]

$$OBJECTIVE = X_1 \left(\left| \frac{\eta_{TT} - \eta_{TT.target}}{\eta_{TT.target}} \right| \right) + X_2 \left(\left| \frac{\eta_{TS} - \eta_{TT.target}}{\eta_{TT.target}} \right| \right)$$
$$X_1 = 0.9; X_2 = 0.1$$

Paper #20

8th International sCO₂ Power Cycles Symposium • February 27 – 29, 2024 • San Antonio, TX, USA

1D model results

Specification	Units	LPC	HPC
Calculated geometry			
Inlet swirl angle	0	35	17.5
Blade angle at impeller inlet (at hub, mean position and shroud)	0	25.5	37.5
Blade angle at impeller exit (backswept)	0	49.5	37.5
Vaned diffuser mean flow path angle	0	60.5	68.5
Blade height at exit; vaned diffuser height	mm	29.280	8.334
Inlet guide vane upstream diameter	mm	200.7	137.0
Hub diameter	mm	70.0	70.5
Shroud diameter	mm	232.6	157.6
Impeller exit diameter	mm	358.0	450.2
Vaned diffuser inlet diameter	mm	384.9	483.9
Vaned diffuser exit diameter	mm	672.6	846.8
Volute exit diameter	mm	211.3	105.5
Axial length	mm	115.80	91.33
Inertia	kg-mm ²	78 968	181 881
Performance at design point			
Minimum flow coefficient	-	0.0382	0.0084
Maximum flow coefficient	-	0.1339	0.0314
Volume flow rate at inlet	m³/s	2.062	0.8986
Isentropic head	kJ/kg	11.61	27.30
Total-to-total efficiency (actual)	%	88.79	89.07
Total-to-static efficiency	%	80.59	80.19
Compressor power	MW	-5.193	-12.166

Paper #20

8th International sCO₂ Power Cycles Symposium • February 27 – 29, 2024 • San Antonio, TX, USA

Performance maps

Pressure (kPa)	Temperature (degC)	Mass Flow (kg/s)	PR	eta_TT	СМ	CS	DELTAh_0_s (kJ/kg)	eta_TT	Q_dot_in (m3/s)	Speed (rpm)
6549.01	38.65	483.80	1.15	0.62	130.40	504.60	5.69	0.64	2.86	9000
7381.07	52.71	556.27	1.05	0.27	136.00	504.60	1.24	0.19	3.23	9000
6649.79	45.57	411.97	1.22	0.78	110.60	504.60	8.05	0.78	2.57	9000
6820.67	49.59	358.89	1.28	0.86	94.52	504.60	10.37	0.86	2.23	9000
8142.50	49.29	541.28	1.29	0.83	119.40	504.60	9.18	0.83	2.44	9000
				•				•		
•	•	•		•			•	•	•	

Paper #20

8th International sCO₂ Power Cycles Symposium • February 27 – 29, 2024 • San Antonio, TX, USA

Paper #20

Performance maps

Paper #20

8th International sCO₂ Power Cycles Symposium • February 27 – 29, 2024 • San Antonio, TX, USA

CAD models

358 x 116

450 x 91

CAD models

HPC

358 x 116

LPC

450 x 91

For the HPC, when operating at the highest speed and flow rate, a two-phase flow state may be encountered.

Summary and conclusions

- Dynamic compressor models are required for transient simulation studies of sCO₂ cycles.
- Most researchers apply Dyreby's correlations, which is useful, but has shortcomings.
- Except for KAIST-TMD and AIFa CCD, which are not fully documented and leave room for improvement, there are no suitable tools available to size and develop performance maps for sCO₂ radial compressors.

Summary and conclusions

- Dynamic compressor models are required for transient simulation studies of sCO₂ cycles.
- Most researchers apply Dyreby's correlations, which is useful, but has shortcomings.
- Except for KAIST-TMD and AIFa CCD, which are not fully documented and leave room for improvement, there are no suitable tools available to size and develop performance maps for sCO₂ radial compressors.
- In this work:
 - A 1D mean-line code to size centrifugal compressors was developed and verified.
 - The code was used to size centrifugal compressors and develop performance maps.
 - 3D models were developed to estimate the inertia of the compressors.

Summary and conclusions

- Dynamic compressor models are required for transient simulation studies of sCO₂ cycles.
- Most researchers apply Dyreby's correlations, which is useful, but has shortcomings.
- Except for KAIST-TMD and AIFa CCD, which are not fully documented and leave room for improvement, there are no suitable tools available to size and develop performance maps for sCO₂ radial compressors.
- In this work:
 - A 1D mean-line code to size centrifugal compressors was developed and verified.
 - The code was used to size centrifugal compressors and develop performance maps.
 - 3D models were developed to estimate the inertia of the compressors.
- The maps and inertia values may be used to model compressors in simulation software.
- The methods employed in this work may be used by others to model centrifugal compressors.

Cycles of interest

15

HRX C

HRX H

12

RCC

6 13

LRX C

LRX H

LPC

HPC

5

PC: Pre-cooler IC: Intercooler LPC: Low pressure compressor HPC: High pressure compressor **RCC:** Recompression compressor MH: Main heater **RH: Reheater** HPT: High pressure turbine LPT: Low pressure turbine LRX: Low temperature recuperator HRX: High temperature recuperator _C: Cold side H: Hot side G: Generator

8th International sCO₂ Power Cycles Symposium • February 27 – 29, 2024 • San Antonio, TX, USA

HPT

LPT

G

Slide 39

Mollier diagram

4

Paper #20

8th International sCO₂ Power Cycles Symposium • February 27 – 29, 2024 • San Antonio, TX, USA

Mass Balance (all elements)

 $\dot{m} = \rho A c$

Energy Balance (impeller)

$$h_{0.out.s} = h_{0.in} - w_{Euler} - \Delta h_{imp.int}$$
$$h_{0.out} = h_{0.in} - w_{Euler} + \Delta h_{imp.ext}$$

Energy Balance (other elements)

$$h_{0.out.s} = h_{0.in} - \Delta h_{element}$$
$$h_{0.out} = h_{0.in}$$

Entropy Balance (all elements)

$$s_{in} = f(P_{in}, T_{in})$$

$$s_{out.s} = s_{in}$$

$$P_{0.out} = f(h_{0.out.s}, s_{out.s})$$

$$T_{0.out} = f(h_{0.out}, P_{0.out})$$

Paper #20

Governing equations

Real gas fluid property relationships

$$h_0 = h + \frac{1}{2}c^2$$

$$h,\rho,\nu,ss=f(P,T)$$

Work and efficiency definitions

$$w_{c.s} = h_{0.0} - h_{0.5.ss}$$
$$w_c = h_{0.0} - h_{0.5}$$
$$\eta_{TS} = \frac{h_{0.0} - h_{5.ss}}{w_c}$$
$$\eta_{TT} = \frac{w_{c.s}}{w_c}$$

	Loss/ Model	Source
	Inlet guide vanes	(Galvas, 1973)
	Skin friction	Jansen (as cited by Ameli et al., 2018; Harrison, 2020)
	Impeller blade loading	(Aungier, 1995)
S	Hub to shroud (for shrouded impellers)	(Aungier, 1995)
sse	Mixing	(Aungier, 1995)
al lo	Clearance (for unshrouded impellers)	Jansen (as cited by Zhang et al., 2019)
nterr	Incidence	(Aungier, 2000)
-	Entrance diffusion	(Aungier, 1995)
	Choke	(Aungier, 1995)
	Shock	(Aungier, 1995)
s	Disk friction	Daily & Nece (as cited by Zhang et al., 2019)
dern osse	Recirculation	Coppage & Dallenbach (as cited by Zhang et al., 2019)
ín⊇	Leakage (for unshrouded impellers)	(Aungier, 1995)
	Vaneless space (friction)	Based on Jansen (as cited by Ameli et al., 2018)
	Vaned diffuser (incidence)	Aungier (as cited by Zhang et al., 2019)
	Vaned diffuser (friction)	Based on Jansen (as cited by Ameli et al., 2018)
	Volute pressure recovery	Japikse & Baines (1997)
	Slip factor	Wiesner (1967)

Paper #20

8th International sCO₂ Power Cycles Symposium • February 27 – 29, 2024 • San Antonio, TX, USA

Related work

- Steady state cycle study:
 - du Sart, C.F., Rousseau, P. & Laubscher, R. 2024. Comparing the partial cooling and recompression cycles for a 50 MWe sCO2 CSP plant using detailed recuperator models. Renewable Energy. DOI: 10.1016/j.renene.2024.119980.
- Solar field and receiver studies:
 - Heydenrych, J.M., Rousseau, P.G. & du Sart, C.F. 2022. Reduced-order modelling of central solar tower receivers using an equivalent thermal resistance network. In Proceedings of the 16th international conference on heat transfer, fluid mechanics and thermodynamics (HEFAT-16). Virtual: HEFAT. 911– 916. Available: https://www.researchgate.net/publication/363173202.
 - Heydenrych, J.M., Rousseau, P.G. & du Sart, C.F. 2023. A reduced order modelling methodology for concentrated solar power external cylindrical receivers. In Proceedings of the 17th international heat transfer conference (IHTC-17). Cape Town: Begell House. Available: https://ihtcdigitallibrary.com/conferences/ihtc17,7188217e24389634,15e3d1eb26dcb54a.html.
- Heat rejection system study:
 - Abrahams, L., du Sart, C. & Laubscher, R. 2022. Design of an air-cooled heat rejection system for a SCO2 concentrated solar power plant. In 16th international conference on heat transfer, fluid mechanics and thermodynamics (HEFAT-16). Virtual: HEFAT. 288–293. Available: https://www.researchgate.net/publication/363173234.
- Turbine studies:
 - du Sart, C.F., Rousseau, P. & Laubscher, R. 2024. A method to develop centrifugal turbine performance maps for off-design and dynamic simulation studies of sCO2 cycles. In Review.
 - Laubscher, R., Rousseau, P., Van Der Spuy, J., du Sart, C. & Johannes, P. A unified thermofluid network simulation methodology to model centrifugal compressors with supercritical real gas working fluids. In Review.

References

Ameli, A., Turunen-saaresti, T., Grönman, A. & Backman, J. 2018. Compressor design method in the supercritical CO2 applications. The 6th International Symposium - Supercritical CO2 Power Cycles.

Aungier, R.H. 1995. Mean streamline aerodynamic performance analysis of centrifugal compressors. Journal of Turbomachinery. 117(3):360–366. DOI: 10.1115/1.2835669.

Aungier, R.H. 2000. Centrifugal Compressors: A Strategy for Aerodynamic Design and Analysis. New York: ASME Press. DOI: 10.1115/1.800938.

Balje, O.E. 1981. Turbomachines: A Guide to Design, Selection, and Theory. New York: John Wiley & Sons.

Binotti, M., Astolfi, M., Campanari, S., Manzolini, G. & Silva, P. 2017. Preliminary assessment of sCO2 cycles for power generation in CSP solar tower plants. Applied Energy. 204:1007–1017. DOI: 10.1016/j.apenergy.2017.05.121.

Carstens, N. 2007. Control strategies for supercritical carbon dioxide power conversion systems. Massachusetts Institute of Technology.

Cho, S.K., Bae, S.J., Jeong, Y., Lee, J. & Lee, J.I. 2019. Direction for high-performance supercritical CO2 centrifugal compressor design for dry cooled supercritical CO2 Brayton cycle. Applied Sciences (Switzerland). 9(19). DOI: 10.3390/app9194057.

Correa, F., Barraza, R., Soo Too, Y.C., Vasquez Padilla, R. & Cardemil, J.M. 2021. Optimized operation of recompression sCO2 Brayton cycle based on adjustable recompression fraction under variable conditions. Energy. 227. DOI: 10.1016/j.energy.2021.120334.

Dostal, V., Driscoll, M.J. & Hejzlar, P. 2004. A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors. Massachusetts Institute of Technology. Dyreby, J.J. 2014. Modeling the Supercritical Carbon Dioxide Brayton Cycle with Recompression. WISCONSIN-MADISON.

Flownex SE. 2020. Flownex Library Manual.

Galvas, M. 1973. Fortran program for predicting off-design performance of centrifugal compressors. Washington DC.

Harrison, H.M. 2020. Development and Validation of a New Method To Model Slip and Work Input for Centrifugal Compressors. Purdue University.

Japikse, D. & Baines, N.C. 1997. Introduction to Turbomachinery. Concepts ETI Inc. and Oxford University Press.

Jeong, Y., Son, S., Cho, S.K., Baik, S. & Lee, J.I. 2020. Evaluation of supercritical CO2 compressor off-design performance prediction methods. Energy. 213:119071. DOI: 10.1016/j.energy.2020.119071.

Kulhanek, M. & Dostal, V. 2011. Thermodynamic Analysis and Comparison of Supercritical Carbon Dioxide Cycles. In Supercritical CO2 Power Cycle Symposium. Boulder.

References

- Lee, J. 2016. Study of improved design methodology of S-CO2 power cycle compressor for the next generation nuclear system application. Korea Advanced Institute of Science and Technology. Available:
- https://kdrm.kaist.ac.kr/ezpdfwebviewer/ezpdf/customLayout.jsp?encdata=67D4CD8135C7372A42DB0940C33C3EA11F56B0C612D0A8D3799BF481C377949DE46 4993BE0419278598BD59B7D4A0373654623C1456D6BC18194BAD1257817965B00F5FD41B0997C&lang=ko#.
- Luu, M.T., Milani, D., McNaughton, R. & Abbas, A. 2017a. Analysis for flexible operation of supercritical CO2 Brayton cycle integrated with solar thermal systems. Energy. 124:752–771. DOI: 10.1016/j.energy.2017.02.040.
- Luu, M.T., Milani, D., McNaughton, R. & Abbas, A. 2017b. Dynamic modelling and start-up operation of a solar-assisted recompression supercritical CO2 Brayton power cycle. Applied Energy. 199:247–263. DOI: 10.1016/j.apenergy.2017.04.073.
- Mehos, M., Turchi, C., Vidal, J., Wagner, M., Ma, Z., Ho, C., Kolb, W., Andraka, C., et al. 2017. Concentrating Solar Power Gen3 Demonstration Roadmap. Available: https://www.nrel.gov/docs/fy17osti/67464.pdf.
- Neises, T. & Turchi, C.S. 2014. A comparison of supercritical carbon dioxide power cycle configurations with an emphasis on CSP applications. Energy Procedia. 49:1187–1196. DOI: 10.1016/j.egypro.2014.03.128.
- Neises, T. & Turchi, C.S. 2019. Supercritical carbon dioxide power cycle design and configuration optimization to minimize levelized cost of energy of molten salt power towers operating at 650 °C. Solar Energy. 181(November 2018):27–36. DOI: 10.1016/j.solener.2019.01.078.
- Oh, H.W., Yoon, E.S. & Chung, M.K. 1997. An optimum set of loss models for performance prediction of centrifugal compressors. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy. 211:331–338. DOI: 10.1243/0957650971537231.
- Osorio, J.D., Hovsapian, R. & Ordonez, J.C. 2016. Dynamic analysis of concentrated solar supercritical CO2-based power generation closed-loop cycle. Applied Thermal Engineering. 93:920–934. DOI: 10.1016/j.applthermaleng.2015.10.039.
- Padilla, R.V., Benito, R.G. & Stein, W. 2015. An Exergy Analysis of Recompression Supercritical CO2 Cycles with and without Reheating. Energy Procedia. 69:1181–1191. DOI: 10.1016/j.egypro.2015.03.201.
- Seidel, W. 2010. Model developmenet and annual simulation of the supercritical carbon dioxide Brayton cycle for concentrating solar power applications. University of Wisonsin - Madison.
- Thanganadar, D., Fornarelli, F., Camporeale, S., Asfand, F. & Patchigolla, K. 2020. Analysis of design, off-design and annual performance of supercritical CO2 cycles for csp applications. Proceedings of the ASME Turbo Expo. 11:1–9. DOI: 10.1115/GT2020-14790.
- The World Bank. 2019. Global Solar Atlas. Available: https://globalsolaratlas.info/download [2020, September 04].

References

Turchi, C.S., Ma, Z., Neises, T.W. & Wagner, M.J. 2013. Thermodynamic study of advanced supercritical carbon dioxide power cycles for concentrating solar power systems. Journal of Solar Energy Engineering, Transactions of the ASME. 135(4):1–7. DOI: 10.1115/1.4024030.

Wiesner, F.J. 1967. A review of slip factors for centrifugal impellers. Journal of Engineering for Gas Turbines and Power. 89(4):558–566. DOI: 10.1115/1.3616734. Wright, S.A., Radel, R.F., Vernon, M.E., Rochau, G.E. & Pickard, P.S. 2010. Operation and Analysis of a Supercritical CO2 Brayton Cycle. Albuquerque. DOI: https://doi.org/10.2172/984129.

Yang, J., Yang, Z. & Duan, Y. 2023. Design Optimization and Operating Performance of S-CO2 Brayton Cycle under Fluctuating Ambient Temperature and Diverse Power Demand Scenarios. Journal of Thermal Science. 32. DOI: 10.1007/s11630-023-1839-2.