SCO2 WASTE HEAT RECOVERY SYSTEM EVALUATION FOR STEELMAKING PROCESS

Ladislav Vesely¹, Logan Rapp², Jayanta Kapat¹

¹University of Central Florida, Center for Advanced Turbomachinery and Energy Research, Orlando, FL, USA ²Sandia National Laboratories, Albuquerque, NM, USA

> The 8th International Supercritical CO₂ Power Cycles Symposium

Sandia National Laboratories

February 27 – 29, 2024, San Antonio, Texas Paper 14

Center for Advanced Turbomachinery and Energy Research Laboratory for Turbine Aerodynamics, Heat Transfer and Durability

Background

Steel and Iron Industry

- Iron and Steel production is an energy-intensive process.
 - Iron and Steel production requires raw materials to be heated to >1973 K.
 - Exhaust gases can reach up to 1573 K, depending on the process.
- Improving the energy efficiency of a plant will dramatically improve its bottom line & reduce emissions.
- Waste heat recovery (WHR) systems are the key for transition current iron and steel plants to greening cement plants

	Aluminum	Iron and Steel	Cement	
Production	0.86	86 (steel); 22 (iron)	93	million tons per
Capacity	1.69	-	100	year

Raw steel production

3

Iron and Steel Industry - Process description

Available waste heat from steel industry and estimation temperature

Process	Temperature
Electric arc furnace	1273 – 1573 K
Electric arc furnace with recovery	473 – 573 K
Blast and cupola furnace	723 K

4

Iron and Steel Industry Decarbonization

- Different approaches to Decarbonization in each sector:
 - Use an alternative fuel or energy source direct approach:
 - Alternative fuel H₂
 - Energy generated from renewable energy sources (e.g., solar, wind, geothermal plants) or nuclear (e.g., fission and fusion)
 - Carbon capture systems (CCS) direct approach:
 - CCS can help reduce CO₂ emissions if it is not possible to replace the heat source or the emissions are a product of a chemical process in the plant.
 - Utilization of waste heat indirect approach:
 - Waste heat can be re-input to the process for additional added heat
 - Waste heat contains a large amount of energy can be recovered and converted into electricity
 - By-product of the system potentially a secondary source to reduce plant consumption

5

System Description

WHR systems – principle and heat source

- Iron and Steel production requires raw materials to be heated to >1973 K.
- Exhaust gases can reach up to 1573 K (Depends on the process).
 - Potential heat source for WHR systems.

Iron and steelmaking process – two sources of the waste heat in three different steps:

- solid streams (molten slag)
- exhaust gas streams

	Exhaust temperature range		H ₂	со	CO ₂	N ₂	CH4	C ₂ H ₆	H ₂ O
	K	-				%			
Coke oven	1253.15	473.15	52	4	2 {8}	{70}	37	5	{22}
Blast furnace	703.15	403.15	3	26	21 {26}	50 {68}			{5}
Basic oxygen furnace	1973.15			73	16	8			
Electric arc furnace	1473.15	477.15	11	18	14	57			

WHR systems comparison

Advantages	Disadvantages
OF	RC
Current use; Footprint; Size; Retrofitting	Max. operating temperature 400 °C; Working medium; Price
SF	RC
Current use; Working medium; Price	Water requirement; Footprint; Size; Retrofitting
sC	00 ₂
High efficiency; Footprint; Size; No water requirement; Turbomachinery; Retrofitting	Under development; Price; Material; HEX

Proposed cycles:

- Organic Rankine cycle (ORC)
- Steam cycle (SRC)
- sCO₂ cycle

8

Waste heat power cycles - sCO₂ power cycle

- Theoretical and practical promise of compactness, high efficiency, and wide-range-applicability
- Can be used for the majority of heat sources in energy conversion systems
- Main applications:
 - waste heat recovery systems
 - solar power plants
 - geothermal power plants
 - fossil power plants
 - nuclear power plants

Application	Power	Operation Temperature	Operation Pressure	
	[MWe]	[K]	[MPa]	
Nuclear	10 - 300	623 - 973	20 - 35	
Fossil fuel (syngas, natural gas, coal)	300 - 600	823 - 1773	15 - 35	
Geothermal	10 - 50	1373 - 573	15	
Concentrating solar power	10 - 100	773 - 1273	35	
Waste heat recovery	1 - 10	573 - 923	15 - 35	

9

3.00

Temperature [° C]

sCO₂ Cycle layouts

- Cycle configuration:
 - Simple Brayton
 - Recuperated
 - Re-compression
 - Split expansion

10

Relibration = 0.2 (1.4 span/love) **System Analysis**

emp. coefficient zero { 0. | (-25. 40°)

(-40 --- 27)

1 0.2 (

 $U_{4}^{2} + U_{K_{2}}^{2} + U_{K_{3}}^{2} +$

2.460 54 10

(Y. of Span)

pint & span

ud:

sCO₂ Cycle layouts - Input and boundary conditions

- Waste heat parameters
 - Exhaust and cooling stream:
 - Waste heat stream temperature is 1473 K
 - · Exhaust gas flow is uniform and pressure drops are not considered
 - Average ambient air temperature is defined as 300 K
 - sCO₂ stream:
 - Minimal temperature difference between air and CO₂ streams is 5 K
 - The pressure drops are not considered in the calculation for all cases
- The system is designed for 4 MWe net power

Parameter	Lower	Upper		
Pressure ratio	2.6	4.0	-	
Turbine inlet pressure	20	30	MPa	
Turbine inlet temperature	823.15		K	
Compressor inlet temperature	306		ĸ	
Turbine efficiency	Turbine efficiency 90			
Compressor efficiency	69		%	
Recuperator effectiveness	90			

The generator efficiency is 96 %, clutch efficiency is 95 %, and gearbox efficiency is 93 %.

The 8th International Supercritical CO₂ Power Cycles Symposium; February 27 – 29, 2024, San Antonio, Texas

12

sCO₂ Cycle layouts – Simulation procedure

- In-house computer code based on the Python programing language
- sCO₂ properties table (sCO₂ and exhaust gas)
 - NIST Reference Fluid Thermodynamic and Transport Properties database, Version 9.1
 - CoolProp open-source Thermo-physical Property Library
- The optimized parameters:
 - Cycle efficiency

Parameter	Lower	Upper	
Pressure ratio	2.6	4.0	-
Turbine inlet pressure	20	30	MPa
Turbine inlet temperature	823.15		К
Compressor inlet temperature	306		
Turbine efficiency	90		
Compressor efficiency	69		%
Recuperator effectiveness	90		

13

Specific added heat :A) Simple BraytonB) RecuperatedC) Re-compressionD) Split expansion

15

Specific Net power:A) Simple BraytonB) RecuperatedC) Re-compressionD) Split expansion

SATER

16

UCF

• Optimization results for the cycle efficiency

	Simple Brayton	Recuperated	Re-compression	Split Expansion		
η _{th}	18.35	35.68	39.15	35.38	%	
W _t	6.59	6.59	6.03	6.2		
W _c	1.75	1.75	1.22	1.35		
Q _{in}	26.34	13.5	8.62	9.09	N // \ \ /	
Q _{out}	21.5	8.7	3.34	3.76		
Q _{reg}	0	12.76	12.84	17.39		
W _{gross}	4.8					
W _{net}			4			
m _{sCO2}	39	39	37	39	kg/s	
π	3.8	8	3.6	3.7		

- The turbine inlet pressure = 30 MPa
- The compressor inlet temperature = 306 K

The 8th International Supercritical CO₂ Power Cycles Symposium; February 27 – 29, 2024, San Antonio, Texas

17

Conclusion

Conclusion

- The work presented:
 - Evaluation of potential sCO₂ power conversion cycle layouts to utilize waste heat from steel process exhaust gas streams
 - Simple Brayton
 - Recuperated
 - Re-compression
 - Split expansion
- The results show the potential to use the sCO₂ power cycle
 - High temperature range waste heat source
 - The re-compression cycle has the greatest cycle efficiency (39.15 %); added heat 8.62 MW for 4 MWe output
- Future work:
 - Techno-economic analysis for cycle layouts
 - Detailed design and optimization of the PHX

Disclaimer

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Thank you for your attention.

Ladislav Vesely Ladislav.Vesely@ucf.edu

University of Central Florida

Center for Advanced Turbomachinery and Energy Research Laboratory for Turbine Aerodynamics, Heat Transfer and Durability