

Coated and Uncoated Steel Compatibility in Supercritical CO₂ at 450°-650°C

B. A. Pint¹, R. Pillai¹, M. J. Lance², J. R. Keiser¹

¹Corrosion Science & Technology Group ²Nuclear Energy Materials Microanalysis Group Materials Science & Technology Division Oak Ridge National Laboratory, Oak Ridge, TN

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Acknowledgments

- Funding: DOE Office of Fossil Energy and Carbon Management, Advanced Materials Program
 - FEI Talos F200X STEM provided by the U.S. Department of Energy, Office of Nuclear Energy, Fuel Cycle R&D Program & the Nuclear Science User Facilities
- B. Johnston, G. Garner oxidation experiments
- T. Lowe SEM, image analysis
- V. Cox, D. Newberry metallography
- Special thanks for alloys:
 - Tenaris, T91
 - EPRI, VM12
 - Sam Sham, INL (US heat, alloy 709)

Most questions over 10 years were about steels & coatings!

Supercritical CO₂ applications

sCO₂ has many unique & attractive aspects

Cost is a concern: Ni-based alloys: OK in sCO₂ Where can steels be used? Can we coat them?

Interest in >700°C for high efficiency

Feher, 1965 50% sCO₂ eff @ >720°C

- Low critical point (31°C/7.4 MPa)
- High, liquid-like density Flexible, small turbomachinery

Supercritical CO₂ Allam cycle: first clean fossil energy?

NetPower 25MWe test facility (Texas)

Exelon, Toshiba, CB&I, 8Rivers Capital: \$140m

C02-free natural gas? CCS project powers grid for first time By Carlos Anchondo, Edward Klump | 11/17/2021 07:07 AM EST

May 2018: announced first firing November 2021: 1st grid power

Material challenges:

Combustor: **900°C** Turbine exit: <u>750°C/300 bar</u> **Combustion impurities: O₂, H₂O, SO₂**

Burning natural gas in sCO₂ creates impurities...what is effect?

Thermodynamics: Oxygen levels similar in steam/CO₂ Concern about high C activity at m-o interface

High carbon activity at $P_{total} = 1$ bar (What is $P_{interface}$?)

General conclusion: internal carburization concern for Fe-based alloys

sCO₂ compatibility: broad range of conditions considered

400°-650°C: concern about steel carburization

- Well-known issue from CO₂cooled reactors
 - Grade 9 steel current issue
- 550°-600°C transition temperature for normal austenitic steels
- Key to low-cost technology

650°-800°C: Ni-based alloys

- No issues for Ni-based alloys
 - Low C solubility, protective Cr_2O_3 formation
- Similar rates for air, CO_2 and sCO_2

- Little or no P effect @ 750°C

>800°C: challenging for superalloys/cermets/FeCrAl

- Initial results at 0.1 & 2 MPa
 - Subcritical P effect observed
- Mo/W cermets need coating
- Accelerated attack of Nibased superalloys
- SiC promising, but not MoSi₂
- FeCrAl attacked at 1200°C

0.1 MPa – Al₂O₃ supposed protective?

ORNL steel project started in August 2019

Test matrix & progress

Temperature	RG sCO ₂	+1%O ₂ +0.1%H ₂ O
450°C (842°F)	2,000 h	1,000 h
550°C (1022°F)	2,000 h	1,000 h
650°C (1202°F)	2,000 h	1,500 h

Autoclave: 300 bar sCO₂ 500-h cycles

~5 cm² alloy coupons + tensile specimens

- Four primary alloys in test matrix
 - T91: Fe-9Cr-1Mo, creep strength enhanced steel
 - VM12: Fe~12Cr-Co-W
 - 316H: conventional stainless steel
 - 709: advanced austenitic, 20Cr-25Ni+Nb
- 10 specimens of each alloy
- With and without impurities (open vs. closed)

Alloy	UNS	Cr	Ni	Mn	Si	С	Ν	Other
Gr.91	K90901	8.6	0.3	0.5	0.4	.10	.05	0.9Mo,0.2V
VM12	12CrCoW	11.5	0.4	0.4	0.4	.12	.04	1.6W,1.5Co
316H	S31609	16.3	10.0	0.8	0.5	.04	.04	2.0Mo,0.3Co
NF709	\$31025	20.1	25.2	0.9	0.4	.06	.15	1.5Mo,0.2Nb

Baseline of research grade (RG) CO_2 : $\leq 5 \text{ ppm } H_2O$ and $\leq 5 \text{ ppm } O_2$

Based on CSP (solar) metric: all limited to <550°C with impurities Rates for 709 (UNS S31025): may not reflect steady state at 1000 h

CAK RIDGE National Laboratory Similar T91 rates in steam. Are we really concerned about rates?

SS: faster attack with O_2/H_2O FeCr: Fe₂O₃ formation

- Stainless steel (316/709)
 - RG sCO₂: thin Cr-rich scale
 - Good C barrier
 - Impurities: duplex scale
 - Common with steels
 - Now is C ingress possible?
- 9-12Cr steels
 - 450°C: increased T91 attack
 - 550°-650°C
 - Clear duplex scale in both cases
 - With $1\%O_2$ form Fe_2O_3 layer
 - VM12: no benefit of higher Cr content after 1,000 h

Bulk C measurements: Fe-rich oxides allow C ingress

- Measurements by combustion analysis, increasing with time
- Focus on 650°C results, less ingress at 600° and 550°C

10

 sCO₂ impurities tend to increase C ingress (but not all cases)
CAK RIDGE National Laboratory

RG sCO₂: combination of mass change & 25°C ductility to illustrate issue with 316H at 650°C (709 not affected)

High ductility & low mass gain

500h & 1000 h measurements for each stainless steel

Low ductility & high mass gain

South Contract Contra

316H: not much change in 25°C ductility with impurities More mass gain, similar embrittlement at 650°C

High ductility & low mass gain

GDOES of 709 specimens after 1000 h

GDOES: Glow discharge optical emission spectroscopy

650°C: more C ingress with impurities

709 showed drop in 25°C ductility at 650°C with the addition of O_2/H_2O impurities

National Laborator

500h & 1000 h measurements for each stainless steel

Low ductility & high mass gain

Observed massive internal carburization of steels

0.7

0.6-

0.5

0.4

0.3

0.2

0.1

650°C

Bulk C Content (wt.%)

- T91: Fe-9Cr-1Mo
- 316H: Fe-16Cr-10Ni
- Massive C uptake at 650°C for both alloys
 - Reflected in bulk C measurements
 - And loss of room temperature ductility

Can coatings help inhibit C uptake?

Initial sCO₂ testing at 650°C \pm O₂/H₂O with pack Cr coating

- Pack Cr coating by industrial partner: no details available
- High mass gains for uncoated 9Cr steel: variable due to spallation
- Low mass gain in RG sCO₂ but mass gain increased with impurities

- Thin scale formed in RG sCO₂ : not thick Fe-rich oxide
- Oxide nodules formed with O_2/H_2O additions

Precipitates in coating after 1,000 h at 650°C in RG sCO₂

- Coating ~110 µm thick
- Confirmed carbide precipitates by EPMA

STEM/EDS of T91+Cr 1kh/650°C sCO₂: C in Cr₂O₃

STEM/EDS of T91+Cr 1kh/650°C sCO₂: C and Mo in Cr₂O₃

- Unusual area with oxidized precipitate under scale
 - <10%Cr left in coating at interface
- C and Mo within inner scale
- Fe and Mn in outer scale

709 500h: thicker complex scale at 300 bar, not 1 bar CO₂

Heating to 650°C in sCO₂ may be an issue

T91+Cr, $sCO_2 w/O_2+H_2O$: forming Fe-rich oxide nodules

- Unable to form protective Cr-rich oxide with $1\%O_2+0.1\%H_2O$
- Cr-rich precipitates also formed beneath scale after 1000 h

sCO₂ with impurities: significant Cr consumption

- 1000 h/650°C: higher Cr consumption with impurities
- 650°C: temperature too high for ~110 µm thick Cr pack coating

Second batch of pack coatings tested at 650°C

- AI at TTU: 30min at 1050°C, 20wt.%Cr-10%AI+2%NH₄CI+78%AI₂O₃
- Pack aluminizing T91 did not work as well as Cr in RG sCO₂
- Pack chromizing 316H effective in RG sCO₂ at 650°C

T91: Pack aluminide formed mixed AI-Fe oxide at $650^{\circ}C$

- Targeted low ~20wt%Al coating with good CTE mismatch with T91
- High mass gain due to mixed Fe-Al oxide formation
 - 650°C is low temperature for selective AI oxidation
 - High AI coating may perform better

Chromized 316H: thin Cr-rich scale formed + precipitates

- Thinner coating formed on FCC 316H substrate
 - Again, coating made by company, no details on process
- Beneficial effect in RG sCO₂ at 650°C after 1,000 h
 - But Cr-rich precipitates are concerning for small Cr reservoir in coating

Summary: sCO₂ is a challenging environment

- All steels degrading at 550°-650°C in sCO₂
 - Increased attack when O_2 and H_2O impurities in sCO_2
 - Increased C uptake for Fe-rich oxides (vs. Cr-rich oxides)
 - Observed decrease in 25°C ductility for 316H in sCO_2 and 709 with impurities
- Opportunity for coatings?
 - Pack Cr and AI coatings evaluated on T91 and 316H
 - Processing (coating thickness + heat treatment) needs to be optimized
 - Cr-rich pack coating beneficial at 650°C
 - Thicker coating tested on T91 compared to 316H
 - Reduced mass gain in sCO₂ but internal carbides observed
 - With impurities at 650°C: significant Cr consumption after only 1000 h
 - Pack aluminized T91 (~20 wt.% peak Al)
 - Not forming a thin Al-rich scale on surface after 500 h at 650°C
- Longer exposures needed at lower temperatures (550°C)

Thank you!

28

RG sCO₂+1%O₂+0.25%H₂O or +0.25%H₂O or +1%O₂

sCO₂ compatibility focused on steels at 450°-650°C

Autoclave: 300 bar sCO₂ 500-h cycles

Correct temperature and pressure

4-5 cm² alloy coupons

Tube furnace: 1 bar CO₂

Same cycle frequency as autoclave

Box furnace: Lab. Air 500-h cycles (baseline)

"Keiser" rig: 500-h cycles 500-h cycles, 1-43 bar CO_2

Studies at 800°-1200°C

Baseline of research grade (RG) CO_2 : ≤ 5 ppm H_2O and ≤ 5 ppm O_2 industrial grade (IG) CO₂: 18±16 ppm H₂O and \leq 32 ppm O₂

709/sCO₂, 650°C/1000 h: Talos EDS maps of thicker multi-layer scale

709/sCO₂, 650°C/1000 h: Talos EDS line profile of multi-layer scale

31