

Thermodynamic Analysis of Five Allam sCO₂ Power Cycle Configurations

Duoli Chen a, John P. O'Connell b, Warren D. Seider a University of Pennsylvania b University of Virginia

Introduction

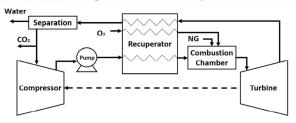
The Allam cycle is a direct-fired oxy-fuel cycle utilizing supercritical CO₂ with nearly zero emission. A detailed thermodynamic analysis can improve and optimize the Allam cycle.

Objective

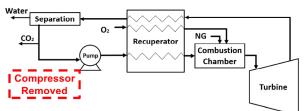
- Evaluate efficiencies of four available variants of the Allam cycle using a 2nd Law analysis based on lost work.
- Analyze the performance of a novel externally-fired gas turbine (EFGT) design.

Methodology

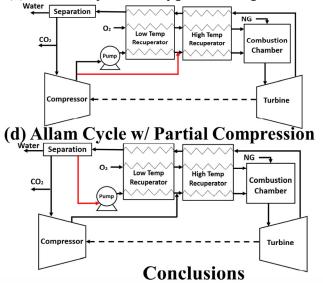
Lost work:

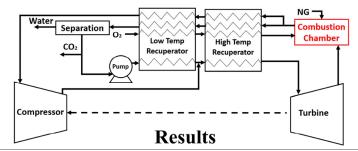

$$L\dot{W} = \sum_{i} \dot{W}_{i} - \Delta[\dot{m}(B)] + \sum_{i} \left(1 - \frac{T_{0}}{T_{i}}\right) \dot{Q}_{i}$$

Equivalent to exergy destruction

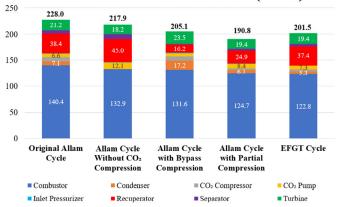

Electrical efficiency:
$$\eta_{\rm el} = \frac{\sum \dot{W}}{\dot{m}_{\rm fuel}({\rm LHV})}$$

Thermodynamic efficiency: $\eta_{\rm II} = 1 - \frac{L\dot{W}}{L\dot{W} - \Sigma\dot{W}}$ Simulations of all cycles performed with Aspen Plus having the same net power output (300 MW), turbine inlet temperature, and machinery efficiency.


(a) Original Allam Cycle


(b) Allam Cycle w/o CO, Compression

(c) Allam Cycle w/ Bypass Compression



(e) EFGT Cycle

Cycle Name	Electrical Efficiency $\eta_{\rm el}$ (%)	Thermodynami Efficiency η_{II} (%)
(a) Original Allam	59.56	56.85
(b) W/O CO ₂ Compression	60.47	57.92
(c) Bypass Compression	61.61	59.35
(d) Partial Compression	63.41	61.12
(e) EFGT	64.35	59.82

Lost Work Distribution (MW)

- Lost work calculations explicitly identify the locations of irreversibilities. Combustor always the least efficient unit; next are heat exchangers.
- Among the four variants of Allam cycle, the cycle with partial recompression is most efficient with 37.2 MW lost work and ~4% higher efficiency by balancing lost work effects in the combustor and recuperator.