Design of a Permanent Magnet **Biased Homopolar Magnetic Bearing** for sCO₂ Turbine Applications

The 8th International Supercritical CO₂ Power Cycles Symposium February 27-29, 2024, San Antonio, TX **Paper #107**

Randall Tucker^{6,*}

1: Southwest Research Institute, San Antonio, TX

2: Electron Energy Corporation, Lancaster, PA

3: Axon Enterprise, Scottsdale, AZ

4: GE Vernova, Niskayuna, NY

5: Texas A&M University, College Station, TX

6: OTBOG Energy, Somerville, TX

*: Work performed while at Texas A&M

The 8th International Supercritical CO₂ Power Cycles • February 27 – 29, 2024 • San Antonio, TX, USA

<u>**Robert Lipham**^{1,*}</u>, Heeju Choi², Marshall Bielefeld^{3,*}, Dongil Shin^{4,*}, Erwin Thomas⁵, Alan Palazzolo⁵,

Supercritical CO₂ Power Cycles Symposium

acknowledged.

Acknowledgement

This work is based upon work supported by the U.S.

The 8th International Supercritical CO₂ Power Cycles • February 27 – 29, 2024 • San Antonio, TX, USA

Department of Energy, Office of Nuclear Energy, under Award Number SC0018813. This financial assistance from Department of Energy is gratefully

This presentation will focus on AMB design development

Primary project goals Develop PM-biased, combo AMB for sCO₂ environment Larger rig development for testing multiple bearing types in sCO₂ environment

PM-biased, combo AMB development Catcher bearing analysis Cooling system analysis Controller development

Combo AMB design features

Catcher-bearings are included to protect the system during power loss

Catcher-bearing bushings

Graphalloy® selected for catcher bearing surface coating Carbon-based surface coating Can withstand up to 800 °C

Drop simulations show safe catcherbearing operation

Radial Bearing

Thrust Actuator Bearing

Bearing

The standard combo AMB probe arrangement requires high probe count and adds axial length

 $X_T = \frac{1}{\Delta} (G_{xa1}(V_x$

$$Z_{T} = \frac{1}{8} \sum_{n=1}^{4} (G_{zan}(V_{zan0} - V_{zan0}) - V_{zan0})$$

The 8th International Supercritical CO₂ Power Cycles • February 27 – 29, 2024 • San Antonio, TX, USA

 $(a_{2}) + G_{xb1}(V_{xb10} - V_{xb1}) - G_{xb2}(V_{xb20} - V_{xb2}))$

 $V_{zan}) - G_{zbn}(V_{zbn0} - V_{zbn}))$

A coupled combo AMB probe arrangement can reduce both probe count and axial length

$$C(G_{a4}(V_{a40} - V_{a4}) - G_{a2}(V_{a20} - V_{a4})) - G_{a2}(V_{a20} - V_{a4}) - G_{a2}(V_{a20} -$$

The 8th International Supercritical CO₂ Power Cycles • February 27 – 29, 2024 • San Antonio, TX, USA

 $-V_{a2}) + G_{b4}(V_{b40} - V_{b4}) - G_{b2}(V_{b20} - V_{b2}))$

 $-V_{an}) - G_{bn}(V_{bn0} - V_{bn}))$

SISO feedback controller selected for combo ANB

$$\begin{bmatrix} I_A \\ I_B \\ I_C \end{bmatrix} = \frac{1}{2}$$

FeCoVn alloys Curie point: ~920 °C

Hiperco® alloys selected for laminations and solid components

Need good magnetic properties at high temperature

Hiperco[®] alloys

 Maintains good saturation flux density and permeability at high temperatures

SmCo 2:17-18 T550 (EEC) High residual flux density High-temperature operation No demagnetization concern up to 550C • Strong sCO2 corrosion resistance _imitations

Strong drop in residual flux density with temperature increase (reversable)

The 8th International Supercritical CO₂ Power Cycles • February 27 – 29, 2024 • San Antonio, TX, USA

Need good magnetic properties at high temperature

Need to keep PMs cool for better force density

kOe

kA/m

SmCo selected for PM material

High pressure N₂ and sCO₂ selected as potential cooling mediums for thermal modeling efforts

Goal: Keep PM temperatures below 200 °C for better AMB performance

Several cooling mediums examined in initial modeling

High-pressure N₂ + Minimal pressure differential + Good thermal properties at high pressure sCO₂ contamination with leaking N₂

The 8th International Supercritical CO₂ Power Cycles • February 27 – 29, 2024 • San Antonio, TX, USA

pressure machine

Selected for further modeling

High pressure sCO₂ + Minimal pressure differential + Good thermal properties at high + No contamination of sCO₂ in

sCO₂ outperforms N₂ cooling for 4000 psi & 75 °C inlet and 700 °C AMB external temperature

SCO2 @75°C

N2 @75°C

The 8th International Supercritical CO₂ Power Cycles • February 27 – 29, 2024 • San Antonio, TX, USA

Parameter Mass flow rate Inlet volumetric flow r Inlet pressure Inlet temperature Avg. PM temperatur Avg. lamination temperature

sCO ₂	N ₂	
0.025 lbm/s		
0.035 cfm	0.103 cfm	
4000) psi	
75	°C	
156 °C	200 °C	
626 °C	632°C	
	sCO ₂ 0.025 0.035 cfm 4000 75 156 °C 626 °C	

Thin film flow around magnets

More concentrated cooling flow around magnets

Further improvements to system cooling

Fluid outlet at shaftstator gap

Better cooling flow across laminations

Average magnet and lamination temperatures close to 100 °C

The 8th International Supercritical CO₂ Power Cycles • February 27 – 29, 2024 • San Antonio, TX, USA

Insulating material applied to AMB exterior

Much lower thermal boundary condition at AMB exterior

Simulation conditions Magnetostatic Material properties at 100 °C average temperature

6 total studies

AMB performance simulations

Study type	Parameters		
1	 Shaft at center 		Estimate
	 Current sweep 	•	Estimate
2	 Shaft at -20 mils 	•	Estimate
	 Current sweep 		
3	 Zero current 		Estimate
	 Shaft position sweep 		

Axis study Radial

Axial

The 8th International Supercritical CO₂ Power Cycles • February 27 – 29, 2024 • San Antonio, TX, USA

Parameters	
Y-axis current sweep	• Z-a
Y-axis position sweep	• Z-a
Z-axis current sweep	• Y-a
Z-axis position sweep	• Y-a

Goals

- e load capacity
- e current stiffness
- e liftoff force
- e negative position stiffness

Constants

- axis current zero
- axis position centered
- axis current zero
- axis position centered

Radial Ouput

The 8th International Supercritical CO₂ Power Cycles • February 27 – 29, 2024 • San Antonio, TX, USA

Simulation results: Radial performance

Liftoff force from Load capacity -20 mils at 10 A at 20 A 350 lbf 100 lbf

Radial Position Stiffness

Maxwell3DDesign1 ANSYS

Simulation results: Axial performance

The 8th International Supercritical CO₂ Power Cycles • February 27 – 29, 2024 • San Antonio, TX, USA

Axial Output

Maxwell3DDesign1 ANSYS

Liftoff force from Load capacity -20 mils at 10 A at 20 A 150 lbf 740 lbf

Axial Position Stiffness

Maxwell3DDesign1 ANSYS

Catcher bearings selected and analyzed for drop stability

Control system developed

Conclusions

behavior

Control loop structure and current transform selected

The 8th International Supercritical CO₂ Power Cycles • February 27 – 29, 2024 • San Antonio, TX, USA

Simulations show stable drop sCO₂ cooling system developed for 100 °C internal temperature

Load capacity and dynamic coefficients estimated

Cooling system analyzed

Magnetic FEA completed for design

