STEP 10 MWe SCO, Turbine Design,

Assembly and Commissioning

Presenter: Jeff Moore, Ph.D. 8th SCO2 Power Cycles Symposium

Co-authors: J. Klaerner, J. Wade,  February 26 — 29, 2024, San Antonio, Texas
J. Mortzheim, G. Jothiprasad, Ph.D.




it] i A, STEP
Supercritical Transformational A
Electric Power (STEP Demo) Project 7~ DEMOD

= -
Test Bay for i
Process Hardware '

oy

Demonstrate an integrated electricity generating power s Eocline
plant using transformational sCO2-based power cycle

technology

Demonstrate pathway to efficiency > 50%

Control Rooms,
Offices, &
Assembly Areas

Demonstrate cycle operability at >700°C turbine inlet
temperature and 10 MWe net power generation

Process \
Electrical !
/

Qua ntify performa nce bene‘ﬁts: Marion, J., Macadam, S., McClung, A., Mortzheim, J., 2022, “The STEP 10 MWe sCO2 Pilot Demonstration Status Update,”
GT2022-83588, Proceedings of the ASME Turbo Expo 2022, Rotterdam, The Netherlands, June 13-17, 2022

= 2-5% point net plant efficiency improvement
= 3-4% reduction in LCOE
= Reduced emissions, fuel, and water usage

Develop a reconfigurable and flexible test facility
= Available for Testing future sCO2 equipment & systems

Achieved mechanical completion October 2023
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STEP Notable Achievements

Built the world’s largest indirect-fired sCO2 power plant at 10 MWe

Achieved Mechanical Completion for the Simple Cycle Configuration

Successfully demonstrated full loop operation

At ~1/10 the size of an equivalent steam turbine, has the world’s highest power density for a terrestrial turbine

16 MW (20,000 hp) produced by 80 kg (180 Ib) rotor (200 kW/kQ)
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Section View of the STEP Turbine with Design Conditions

Inlet Flow
— 3,626 psiat1,319F
- 2274 1bm/s
—  Single Inlet — 5.007 1D at Turbine o o o0
- Velocity — 210.8 ft/s
Exit Flow o O o 0
— 1,307 psi at 1,086F
- 22391bm/s 1 -
—  Single Exit — 6.35" ID at Turbine o
- 29861s

-
o

g
=

—  Design Speed: 27,000 rpm —

- Max Continuous: 28 350 rpm

— 16 MW (13.5 MW Generator and 2.5 MW
Compressor)

- APIB1T 3 o 1

—  Two design conditions
— Inlet 4,130 psi at 1330F =« o 0
- Exit: 2,600 psi at 1150F
-~ ASME Section VIII Division Il i
-  APIG12

—  Creep Rupture: 10,000 hr_
—  Low Cycle Fatigue: 11,000 cycles
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Cross-section of the STEP Turbine

. Bearing Splined

Splined Thsern;al Balance Piston Turbine Stages Thrust Bearing Gearbox

Compressor DGS ea Coupling
Coupling

SCO2 WORKSHOP 2024  §



Isometric View of STEP Case Showing Weld Placement

« Monolithic casing barrel with
fabricated plenums and nozzles

* Full penetration welds
* No high temperature case joints

» Case heads retained with shear
rings and sealed with polymer
seals

* Dry gas seals and bearings
similar to Sunshot

Struts

Outlet
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Rotordynamic Modeling

12Ej1d QPQ gEnd
« Model included rotor, bearings, I vk I R =ims it
squeeze-film dampers, labyrinth and R e | e R =% 5
damper seals, and casing £ %ﬂ I Eﬁ-
3 _
. . £ 7 T
* Pedestal stiffness derived by FEA and 5, O '\l /)
confirmed by modal testing '\\
JournalU_L.J.r, Fluid-Film ¢ /
R T o

Axial Location, inches

GB End Pedestal Stiffness (Individual)
Axis k (Ibf/in)

Faed hnlly

0]
y 904,975 Kyy
895,725]Kxx

Comp End Pedestal Stiffness (Individual)
Axis k (Ibf/in)
411,875

X

y 904,975]Kyy

z 895,725 Kxx
Ki = individual pedestal = ~900,000 Ib/in ‘/L‘
Kped = per bearing end = 2*Ki = ~1,800,000 Ib/in R ¥ "
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Rotordynamic Modeling

* 3 rotor modes and 2 casing modes
traversed up to running speed

« Good separation margin from 4t rotor
mode (2"4 bending mode)

Undamped Critical Speed Map
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Rotordynamic Unbalance Response

* Model shows low response when
traversing casing and rotor modes

* Meets API separation margins

Bearing 1. Absolute Rotordymamic Response Flot
'
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Turbine Case Predicted Natural Frequencies and
Mode Shapes using FEA

Horizontal Modes Vertical Modes Axial Modes

* Pedestal stiffness designed to keep
casing rigid body modes at low
frequency

Bounce

* Less rotational energy to excite
these modes

Conical

* Frequency and mode shape
confirmed with modal testing

Bending
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Case Design

 Designed to accommodate 265 bar,
715°C inlet conditions

* In accordance with ASME Boiler and
Pressure Vessel Code, Section VIlI, Div. 2

e Utilizes Inconel 625, Grade 2 material to
10,000 hour life

* Production model to use IN740H or
Haynes 282 to achieve 100,000 hr life

 Low stress near weld joints

 Transient FEA performed to verify
adequate LCF
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Rotor Manufacturing

* Made from Nimonic 105 heat treated forging

« Airfoil shapes cut using a 5-axis electrode
discharge machining (EDM) by Baker Hughes

« Different shops used for rotor final machining,
grind, spline cutting, and balance

* Spline test piece made of IN718 and trial fit

Close up of EDM Turbine Blades ith Spline Test Piece
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Stator Manufacturing

e 5-axis EDM also used to
manufacture the turbine stators

» High temperature abradable
labyrinth seal coatings applied and
final machined
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Turbine Assembly Steps

« Assembly performed vertically
and flipped to complete
assembly.
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Turbine Assembly

15
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Final Turbine Assembly
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Turbine Skid Assembly
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Fully Assembled Turbine Skid
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Turbine Case Modal Testing

-
Mode Axis Type

I counce

Conical
2nd Con.
Bending

Bounce
Vertical Conical
2nd Con.
Bending
Rocking
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FEA
Predicted
Mode
Frequency
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Rotordyna
mics Model
with Casing
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209

Measur
ed
Frequen
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OIL SYSTEM COMMISSIONING Green Piping = Supply

Yellow Piping = Drains

* Designed in accordance to APl 614

Il 4G
i

)
ol
. ‘-':.'Q
x

* Gravity drain back to lube oil skid

* Flushing performed until ISO 4406 was
met for particle counts
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Turbine Commissioning
First spin achieved Dec. 2023

Labyrinth seal break-in completed

Turbine inlet temperature of 175C and speed
of 18 krpm achieved to date

Low vibrations and critical speed response

Speed and temperature control operational

* Turbine control and trip valve performing well

C)

(barg) and Temp:
E 8 i
Turbine Speed (rpm)

urbine Pressure (barg) and Temperature (|

0 e P Py ep—
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Lessons Learned to Date

Thermal management is key to dry gas seal life (from Sunshot)

— Delivery of warm seal gas is required at all times when the
system is pressurized near the critical pressure (>50 bar)

The turbine case was designed with vibrational modes in the
operating speed range

— Designed to keep modes at low speeds to minimize excitation
— Validated by modal testing
Low vibration and critical speed response matched predictions

Thermal management is key to turbine dry gas seal life, even during
pressurized holds
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Summary

« STEP Turbine successfully assembled with no component rework

* Installed on the turbine skid, rough aligned, piped, final aligned, wired, and
pressure checked

* Ancillary systems, including the lubrication skid and dry gas seal panel, have ‘; i '
been flushed, pressure checked, and commissioned -

» Turbine design incorporated lessons learned from Sunshot with these
enhancements:

— Single-piece turbine case (eliminate hot casing joints and bolts)
— Heads that use polymer seals and shear rings at the cool end
— Improved thermal management design to reduce shock cooling
— Reduced stage count from 4 to 3 with larger shaft diameter

— Radial and thrust bearings, dry gas seals, damper labyrinth seals identical to Sunshot

» High-power density makes coupling design with high torque capacity and low SWRI STEP Team
weight challenging

* Work continuing to commission the turbine to achieve 27 krpm and 500°C

9 U.S. DEPARTMENT OF ‘ = |NATIONAL &
ENERGY | [Tifisuss o ENERGY
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