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Abstract 

Simulation, analysis, and optimization of sCO2 Brayton power cycles was performed by leveraging 
advanced computational techniques, including machine learning and genetic algorithms, to address the 
multi-dimensional challenges of cycle and component design. Machine learning models were used as an 
intermediary in predicting specific cycle design criteria performance metrics from simulated data, 
enhancing system flexibility and computational efficiency. In parallel, multi-objective optimization was 
orchestrated through the NSGA-II algorithm, navigating the trade-offs between cycle efficiency and 
component mass. Heat exchanger sizing was based on a revisited stress analysis, where the implications of 
several common assumptions were explored. The optimization process yielded a multi-dimensional Pareto 
front of potential optimal solutions which showed system objective trade-offs through multi-criteria 
decision-making techniques.  

 
1.  Introduction 

Supercritical carbon dioxide (sCO2) power cycles have the potential to deliver higher thermal 
efficiencies while simultaneously providing increased flexibility in key design criteria such as footprint, 
component mass, source heat rates, cycle temperatures, and mass flow rates. However, the enhanced 
flexibility of these design criteria presents a significant challenge when considering the pace of innovation 
surrounding these cycles and their components. Previous literature in this space has showcased the potential 
of sCO2 Brayton power cycles [1], investigated specific cycle components such as turbomachinery and heat 
exchangers [2], and optimized design criteria and cycle parameters for specific applications such as 
concentrated solar power (CSP), nuclear energy [3], non-renewable energy sources[4], and on-board power 
systems [5]. 

Printed circuit heat exchangers (PCHEs) coupled with sCO2 represent current and future research areas 
in the field of thermal management and energy conversion. PCHEs offer significant advantages in terms of 
compactness, efficiency, and performance in high-pressure and high-temperature applications. PCHEs are 
characterized by their microchannel patterns etched or printed onto metal plates before being diffusion 
bonded together. 

Machine learning and multi-objective optimization via genetic algorithms have become increasingly 
pivotal in the field sCO2 power cycle optimization. These advanced computational techniques offer robust 
solutions to the complex, multi-dimensional problems inherent in the design and operation of sCO2 power 
systems. Machine learning algorithms facilitate the prediction and generalization of system behaviors from 
vast datasets, enabling the efficient handling of uncertainties and variabilities in operational parameters and 
system applications. Concurrently, multi-objective optimization – particularly genetic algorithms like 
NSGA-II – provides a framework for addressing the trade-offs between conflicting objectives such as size, 
weight, performance, and cost constraints. These methods are inherently suited to the multi-criteria nature 
of power system optimization and are used to identify Pareto-optimal solutions which include a set of 
equally optimal solution candidates.  
 



2.  System Simulation and Optimization 
Cycle and turbomachinery simulation processes are constructed using an in-house modular cycle 

simulation program in Python. In order to simulate a wide range of cycle and turbomachinery design 
criteria, most major specifications were generated using Latin Hypercube Sampling (LHS) methods across 
comprehensive ranges, including cycle maximum temperatures, coolant inlet temperatures, working fluid 
and coolant mass flow rates, turbine and compressor efficiencies, effectiveness of heat exchangers, high 
and low cycle pressures, and turbomachinery spindle speeds. Thermodynamic properties of the working 
fluid and coolant were referenced using the database REFPROP (v.10.0, NIST [6]), allowing for a more 
accurate evaluation of properties throughout the system. 
 
2.1.  Cycle Simulation 

Four generalized cycle architectures were investigated to capture a wider range of design criteria: direct 
heating recuperated cycle (Fig. 1a), direct heating non-recuperated cycle (Fig. 1b), indirect heating 
recuperated cycle (Fig. 1c), and indirect heating non-recuperated cycle (Fig. 1d). These four cycles were 
chosen to capture behavior with both direct and indirect heating of the working fluid as well as additionally 
recuperated variations of these two generalized cycle configurations.  

The simulation function of each of the cycle architectures was built in a similar structure utilizing a 
common set of subsystem functions for simulating the process and behavior of each cycle component, 
followed by an update of the system’s thermodynamic properties at the given state point. This allowed for 
more efficient development of new cycle architecture simulation functions and the ability to improve or 
interchange  individual components for each cycle architecture. 

The cycle simulation output was multifaceted, providing a comprehensive analysis of the Brayton 
cycle. Key outputs included detailed thermodynamic properties at each stage of the cycle such as 
temperature, pressure, enthalpy, and entropy, while also providing performance indicators including net 
work output and thermal efficiency. Performance metrics for individual components, including efficiency 
ratios, work output or input, and heat transfer rates, are calculated and presented. 
 

Figure 1a: Direct Heating - Recuperated Cycle Figure 1b: Direct Heating - Non-Recuperated Cycle 

Figure 1c: Indirect Heating - Recuperated Cycle Figure 1d: Indirect Heating - Non-Recuperated Cycle 



2.2.  Machine Learning and Multi-Objective Optimization 
Critical components of the optimization process were individual trained models that acted as 

intermediaries between the raw data from the simulated cycle architectures and turbomachinery, and the 
optimization procedures. These trained models increase the range and flexibility of the system while 
reducing the computational complexity needed to analyze a large number of design criteria. 

This optimization procedure was designed for multi-objective optimization in the context of sCO2 
Brayton cycles, utilizing machine learning models and genetic algorithms. The program integrated 
TensorFlow [7] for neural network models, and pymoo [8] for multi-objective optimization.  

A multi-objective optimization was performed using the NSGA-II algorithm, focusing on maximizing 
cycle efficiency and minimizing turbine and compressor mass. Pre-trained neural network models were 
utilized to predict performance metrics based on input parameters, with the optimization problem defined 
in the Problem class specifying variables, objectives, and bounds. The NSGA-II algorithm iteratively 
improved a solution population through selection, crossover, and mutation, based on the defined objectives. 
Upon completion, optimal solutions and objectives were extracted, denormalized using pre-loaded model 
parameters, and saved for further analysis. The objective points obtained from the NSGA-II algorithm 
culminate in a multi-dimensional Pareto front, representing the most favorable objective points derived 
from the set of optimal solutions. These objective Pareto fronts manifest in a space that corresponds to the 
dimensionality of the optimization objectives. Specifically, when the solutions are mapped into a three-
dimensional space, they form a surface referred to as the Pareto front. This surface illustrates the trade-offs 
among the three objectives, demonstrating how each solution on the Pareto front offers a different balance 
of these objectives. Additionally, multi-criteria decision-making techniques, such as pseudo weights and 
high trade-off points, are applied to the optimization results, providing insights into the objective space and 
identifying solutions with specific characteristics. 

 
3. Heat Exchanger Stress and Sizing Analysis 

The mechanics of PCHEs and the implications of some common assumptions adopted from the 
literature were investigated in the model with the ultimate goal of improving PCHE sizing predictions for 
a variety of sCO2 heat exchangers. Widely used 
geometric simplifications were employed to simplify 
PCHEs with semi-circular channels to be modeled as 
rectangular pressure vessels [9-12]. A schematic of the 
representative triple-slot pressure vessel, given in Fig. 2, 
was applied for the stress analysis and sizing of PCHEs 
in sCO2 cycles. This adjustment allowed for direct 
application of the stress analysis in Ref. [14] to the 
revised triple slot pressure vessel model (Fig. 2). The 
amended model consists of three rectangular channels 
representative of those in a full-scale heat exchanger: an 
“interior” channel embedded between two stay plates 
(orange), and two “exterior” channels flanked by a stay 
plate (orange) and short-side plate (red). The channels are 
enclosed at top and bottom by the long-side plate (blue).  

Reference [14] regards each of the key structural 
elements – short-side plate, long-side plate, and stay plate – as rectangular members capable of supporting 
both membrane and bending stresses. Importantly, in contrast to some previous investigations in the 
literature, investigations did not include a common a priori assumption that the moment of inertia ratio (K) 
approaches zero. Recent investigations often omit c, the distance from the neutral axis to extreme fiber, in 

Figure 2: A schematic of the representative triple-slot 
pressure vessel, was applied for the stress analysis and 

sizing of PCHEs in sCO2 cycles. 



their analyses [9, 10, 12]. Following Ref. [10], the channel failure criterion is regarded as when the total 
stress (membrane plus bending) in a particular structural member exceeds 1.5 times the design stress; where 
the design stress is the product of allowable stress (obtained from Ref. [13]) and a joint factor of 0.7.  
Utilizing a MATLAB script with the stress equations from Ref [14]  and the failure criteria from Refs. [9, 
14], component thicknesses (i.e., t1, t2, and t4 in Fig. 2) were calculated. Note that for the short-side 
members, stresses were calculated at the mid-span (N) and the corner (Q). Similarly, for the long-side 
members, stresses were calculated at the mid-span (M) and corner (Q). The most conservative (largest) 
thickness for each element (corresponding to the stress “hotspot” of the two queried locations) were selected 
as the modeled value.  

A parameter study was performed, given in Fig. 3, to investigate the influence of channel aspect ratio 
(𝛼𝛼 = 𝐻𝐻/ℎ) and the moment of inertia ratio (K) on the short-side thickness t1 (Fig. 3a) and the long-side 
thickness t2 (Fig. 3b). Inconel 625 was used for the PCHE channel with an internal pressure of 21.8 MPa 
and temperature of 1000 K. In Fig. 3a, the channel aspect ratio 𝛼𝛼 varies from square (𝛼𝛼 = 1) to flat (𝛼𝛼 =
0.1), the sensitivity of the short-side thickness (t1) to the moment of inertia ratio K intensifies. Notably, 
when 𝛼𝛼 = 1, t1 demonstrates no sensitivity to K. When K is varied from 0 to 5, there is a growing sensitivity 
of t1 to alpha with increasing K, except at K = 0 where 𝛼𝛼 sensitivity vanishes. The special case of K = 0 is 
adopted exclusively in many previous studies [9-12]. Inverse trends are observed for t1 and t2 in Fig. 3b.  

 
4. Results and Conclusions 

A three-dimensional Pareto surface was produced, given in 
Figure 4, from a multi-objective optimization using an NSGA-II 
algorithm for the direct heated – recuperated cycle with the 
optimization objectives of maximizing cycle efficiency and 
minimizing individual component mass. The Pareto front in 
Figure 4 represents a set of optimized objectives, populated 
within a three-dimensional space. Visualizing trends within this 
three-dimensional space becomes particularly challenging, 
especially when dealing with such a high variation of design 
criteria. 

Extraction of “best” solutions from the Pareto front requires 
further evaluation of the preferred trade-offs within the objective 

Figure 4: Pareto surface produced from a multi-
objective optimization using an NSGA-II algorithm 

for the direct heated – recuperated cycle 

Figure 3: Parametric study on (a) the short-side thickness t1 and (b) the long-side thickness t2 as functions of channel aspect 
ratio (𝛼𝛼 = 𝐻𝐻/ℎ) and the moment of inertia ratio (K). 

(a)                                                                                                   (b) 



space and the desired cycle application. Petal plots were produced in Fig. 6 for two representative optimal 
solutions along the Pareto front and include comparisons of relative magnitudes in optimization objectives 
and solution variables. In the optimization space, a substantial variation in cycle efficiency values is 
observed due to the influence of dominant features from both cycle and turbomachinery sizing ML models, 
respectively. A strong correlation between turbomachinery spindle speed and mass is observed. This 
overwhelming correlation to RPM caused the component mass in the objective space to be almost entirely 
dependent on a maximized RPM, with only slight variations due to component efficiency. 

This variation caused the most 
influential variables, as determined by the 
feature importance metrics of the machine 
learning model for cycle efficiency (Fig. 
8), to stabilize at a similar value throughout 
the objective space, as shown in Figure 6. 
This convergence signifies that, once the 
high-impact variables are optimized, the 
influence of other variables, typically 
deemed lower impact, becomes more 
pronounced in affecting the system's 
objectives. Essentially, as the critical 
variables stabilize at optimal values, the 
contribution of previously minor variables 
to the objectives becomes more evident. 
It's important to note that these dynamics 
were analyzed within a highly variable set 
of design criteria. When applied to real-
world systems, many of these variables will be constrained by specific system requirements, leading to a 
more focused and precise set of solutions within the objective space.  

The analysis of the PCHEs through the revised stress and sizing criteria has yielded significant insights 
into the optimization of their design. Namely, there is a widely used specific case (K=0) across past work 
that should not always be used. The analysis indicated a marked sensitivity of component thickness to both 
𝛼𝛼 and K, underscoring the importance of these parameters in the design and optimization of PCHEs. 
Notably, the analysis revealed a heightened sensitivity of t1 to K as 𝛼𝛼 shifted from square to flat ratio, and 

Figure 6: Feature importance plot for (a) trained turbine ML model and (b) trained direct heating – 
recuperated cycle ML model 

(a)                                                                              (b) 

Figure 5: Petal plots for two representative optimal solutions along the 
Pareto front with comparisons of relative magnitudes in optimization 

objectives and solution variables. 



a heightened sensitivity of t1 to 𝛼𝛼 as K shifted from 0-5. The same trends are observed with t2, but with 
thickness tending to increase with an increase in K and decrease in 𝛼𝛼. 
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