

at High Delta-pressure and Shaft speed

sCO2 Applications Challenge Shaft Sealing

Sandia PALS Design – 'Conical' Seal Leaves:

Assembly and Seal Envelope Dimensions

Results Continue to Verify PALS a Viable Technology for sCO2 Application.

email cmgtech@earthlink.net 8th International Supercritical CO₂ Power Cycles • February 27 – 29, 2024 •

Clayton Grondahl (CMG Tech) and Rich Armstrong (Turbine Consultant)

Dedicated Facility for sCO2Seal Testing at Extreme Pressure and Shaft Speed

PALS for Sandia

PALS Identified as the most promising shaft sealing candidate for:

- Large clearance rub avoidance before actuation on startup / shutdown.
- > Does not induce cross-coupling as with labyrinth seals
- > Requires only a short axial length for design of shorter, more stable, rotors

Sandia plan: modify sCO2 DGS pocket for PALS test:

- > Replace DGS radial seal runner with a cylindrical spacer
- Fest 2 PALS back-to-back same as DGS
- > Enlarge sCO2 passages for flow to close PALS

PALS design specifications:

- > 2.3in (58.4mm) seal diameter
- > 3000psid (207bar) differential pressure
- > 0.015in (0.38mm) fence height
- Seal tip closure of 0.010in (0.25mm) at ~500psid (34bar)
- > Ambient temperature

Supply 'Strip' Style and 'Conical' PALS **Designs with Static Verification Testing**

Design Verification Testing:

Seal Clearance Closure with Pressure Bending of Leaves and Compliant Shaft Seal Operation with Initial Wear-in

Verification Test Results - 'Conical' Seal Leaves:

* Ref ASME GT2023-102258 source material and copyright.

San Antonio, TX, USA

website cmgtech.org

