Effects of thermal boundary condition on turbulent statistics in flows with a supercritical fluid

Hassan Nemati, Ashish Patel, Bendiks Jan Boersma, Rene Pecnik

Process and Energy Department, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
Motivation

Several numerical studies on heat transfer to supercritical fluids
- Effect of buoyancy, heat flux/mass flux ratio, etc.
- Yoo, Annual Review Fluid Mechanics, 2013

Most of the numerical studies assume isoflux boundary conditions
- Isoflux BC allows temperature fluctuations at the wall
- Isothermal BC does not allow temperature to fluctuate at the wall

If fluid’s Prandtl number > 1, temperature fluctuations do not affect heat transfer (Kasagi, 1989; Li et al., 2009).

Does this also hold for flows with strong property gradients even if Pr > 1?
Effect of fluid/wall properties on temperature fluctuations

Thermal effusivity ratio:

\[K = \sqrt{\frac{\rho_f c_p, f \lambda_f}{\rho_s c_s \lambda_s}} \rightarrow \infty : \text{isoflux BC} \]

\[K = \sqrt{\frac{\rho_f c_p, f \lambda_f}{\rho_s c_s \lambda_s}} \rightarrow 0 : \text{isothermal BC} \]

From Tiselj et al. 2001, JHT
Effect of Prandtl number

- Ratio of Nusselt number for isoflux to isothermal boundary conditions

Sleicher, 1955; Kasagi et al., 1989
Thermal effusivity ratio and Prandtl number examples

<table>
<thead>
<tr>
<th>Prandtl number</th>
<th>Air * 0.708</th>
<th>Water * 6.78</th>
<th>scCO$_2$ (80bar) up to 14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>0.00025</td>
<td>0.071</td>
<td></td>
</tr>
<tr>
<td>Nickel based alloy</td>
<td>0.00073</td>
<td>0.207</td>
<td>~0.25</td>
</tr>
<tr>
<td>Copper</td>
<td>0.00015</td>
<td>0.044</td>
<td></td>
</tr>
<tr>
<td>Glass</td>
<td>0.00419</td>
<td>1.190</td>
<td></td>
</tr>
<tr>
<td>Plexiglas</td>
<td>0.00942</td>
<td>2.680</td>
<td></td>
</tr>
</tbody>
</table>

* based on Kasagi et al., Journal of heat transfer, 1989

Investigate influence of thermal effusivity ratio on heat transfer to scCO$_2$
- Allow wall temperature fluctuations: $K = \infty$
- Do not allow temperature fluctuations: $K = 0$
Simulation setup

This setup ensures the same thermodynamic condition at the wall!
Simulation setup

Pressure constant at P=80 bar

Isoflux boundary condition (heat flux Q)

Inflow generator
Properties of supercritical fluids

T-s Diagram including the critical point for CO₂

- P=7.8 Mpa
- P=8.0 Mpa
- P=8.2 Mpa
Governing equations

Low-Mach number approximation of Navier-Stokes equations:

\[
\begin{align*}
\frac{\partial \rho}{\partial t} + \frac{\partial \rho u_i}{\partial x_i} &= 0 \\
\frac{\partial \rho u_i}{\partial t} + \frac{\partial \rho u_i u_j}{\partial x_j} &= -\frac{\partial p}{\partial x_i} + \frac{1}{Re_{\tau_0}} \frac{\partial \tau_{ij}}{\partial x_j} \\
\frac{\partial \rho h}{\partial t} + \frac{\partial \rho u_i h}{\partial x_i} &= -\frac{1}{Re_{\tau_0} Pr_0} \frac{\partial q_i}{\partial x_i}
\end{align*}
\]

\[
\tau_{ij} = \mu S_{ij} = \mu \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} - \frac{2}{3} \frac{\partial u_k}{\partial x_k} \delta_{ij} \right)
\]

\[
q_i = -\lambda \frac{\partial T}{\partial x_i} = -\frac{\lambda}{c_p} \frac{\partial h}{\partial x_i} = -\alpha \frac{\partial h}{\partial x_i}
\]

with:

\[Re_{\tau_0} = \frac{\rho_0^* u_{\tau_0}^* D^*}{\mu_0^*} = 360\]

\[Pr_0 = \frac{\mu_0^* c_p^*}{\lambda_0^*} = 3.2\]

\[Q = \frac{q_w^* D^*}{\lambda_0^* T_0^*} = Re_{\tau_0} Pr q = 2.4\]
Numerical scheme

- **Spatial discretization**: 2nd order central difference on staggered mesh
- **Temporal discretization**: 2nd Adams-Bashforth and Adams-Moulton
- Koren limiter for advection part of energy equation
- Diffusion part in circumferential direction treated implicitly
- Mesh resolution:
 - Mesh points 128 x 288 x 1728
 - Radial 0.55 (wall) < Δr^+ < 4.3 (center)
 - Circumferential $R \Delta \theta^+ = 3.93$
 - Axial $\Delta z^+ = 6.25$
- **Thermophysical properties** (**CO\textsubscript{2} at P=8 Mpa**) are interpolated from table
Instantaneous flow field, isoflux simulation

Stream-wise velocity

Enthalpy
Instantaneous enthalpy fluctuations

\[y^+ = 4.7 \text{ (based on inlet condition)} \]
Enthalpy rms profiles

\[x/D = 15 \]

\[K = \infty \]

\[K = 0 \]
Radial heat fluxes

Total radial heat flux:

\[q_{r,\text{tot}} = \overline{\alpha} \frac{\partial \bar{h}}{\partial r} + \alpha' \frac{\partial \bar{h}'}{\partial r} - \rho u'' h'' \]

Additional heat flux caused by:

\[\alpha' \frac{\partial \bar{h}'}{\partial r} \]

\[x/D = 15 \]

\[K = \infty \]

\[K = 0 \]
Nusselt number ratio

Nusselt number:

\[\frac{N_{u_{\text{isoflux}}}}{N_{u_{\text{isothermal}}}} = \frac{\alpha \frac{\partial h}{\partial r}|_w}{\lambda_b(T_w - T_b)} \]

Supercritical CO\textsubscript{2}

Constant property fluid Pr=3.2

7% higher Nu number
Turbulent kinetic energy and Reynolds shear stress

Turbulent kinetic energy

Reynolds shear stress

\[x/D = 15 \]

\[y = 1 - 2r \]

\[k = \frac{1}{2} \rho u_i' u_i' \]

\[\frac{\varepsilon}{
ho u_i' u_j'} \]

- \[K = \infty \]
- \[K = 0 \]
Decomposed skin friction, FIK identity

(Fukagata, Iwamoto, Kasagi; PoF 2002)

\[
C_{f,FIK} = -\frac{2}{\rho_b U_b^2 R e_0} \int_0^R r \mu S_{rz} r dr + \frac{2}{\rho_b U_b^2} \int_0^R r \rho U_z \frac{\partial \tilde{u} U_z}{\partial r} r dr + \frac{1}{\rho_b U_b^2} \int_0^R (R^2 - r^2) \frac{\partial \tilde{U}_r}{\partial r} r dr + \frac{1}{\rho_b U_b^2} \int_0^R (R^2 - r^2) \frac{\partial \tilde{u}_r U_z}{\partial r} r dr
\]

\[
+ \frac{1}{\rho_b U_b^2} \int_0^R (R^2 - r^2) \frac{\partial \tilde{u}_r U_z}{\partial r} r dr + \frac{1}{\rho_b U_b^2} \int_0^R (R^2 - r^2) \frac{\partial \tilde{u}_r U_z}{\partial r} r dr - \frac{1}{\rho_b U_b^2 R e_0} \int_0^R (R^2 - r^2) \frac{\partial \mu' S_{zz}'}{\partial r} r dr
\]

\[= \Phi(r, z) = \Phi(r, z) - 8 \int_0^R \Phi(r, z) r dr \]

Laminar contribution

Turbulent contribution

Inhomogeneous contribution

Fully developed pipe flow with constant property fluid

\[
16 \frac{1}{Re_b}
\]
Decomposed skin friction, FIK identity

Total skin friction
Laminar contribution
Turbulent contribution
Inhomogeneous contribution

Dashed lines: Iso-flux
Symbols: Iso-thermal
Decomposed Nusselt number, FIK identity

\[
N_{u_{FIK}} = \frac{32}{\lambda_b(T_w - T_b)} \int_0^R r \frac{\partial \bar{h}}{\partial r} r dr - \frac{32 \text{Re}_0 \text{Pr}_0}{\lambda_b(T_w - T_b)} \int_0^R r \rho \theta'' u'' r dr + \frac{16 \text{Re}_0 \text{Pr}_0}{\lambda_b(T_w - T_b)} \int_0^R (R^2 - r^2) \frac{1}{r} \frac{\partial \bar{h} \theta'}{\partial r} r dr

- \frac{16 \text{Re}_0 \text{Pr}_0}{\lambda_b(T_w - T_b)} \int_0^R (R^2 - r^2) \frac{\partial \bar{h} \theta}{\partial z} r dr - \frac{16 \text{Re}_0 \text{Pr}_0}{\lambda_b(T_w - T_b)} \int_0^R (R^2 - r^2) \frac{\partial \bar{h} \theta'}{\partial z} r dr + \frac{16}{\lambda_b(T_w - T_b)} \int_0^R (R^2 - r^2) \frac{\partial \bar{h} \theta}{\partial z} r dr

+ \frac{16}{\lambda_b(T_w - T_b)} \int_0^R (R^2 - r^2) \frac{\partial \bar{h} \theta'}{\partial z} r dr + \frac{16}{\lambda_b(T_w - T_b)} \int_0^R (R^2 - r^2) \frac{\partial \bar{h} \theta'}{\partial z} r dr
\]

Laminar contribution

Turbulent contribution

Inhomogeneous contribution
Decomposed Nusselt number, FIK identity

Total Nusselt number
Laminar contribution
Turbulent contribution
Inhomogeneous contribution

Dashed lines: Iso-flux
Symbols: Iso-thermal
Conclusions

- Thermal effusivity ratio has an effect on heat transfer even for $Pr > 1$ in supercritical flows
- Nusselt number 7% higher for $K = \infty$
- The turbulent heat flux and Reynolds shear stress decrease
- Higher enthalpy fluctuations for $K = \infty$ induce higher density fluctuations, which result in larger velocity fluctuations and thus higher mixing
Thermal activity ratio and Prandtl number examples

<table>
<thead>
<tr>
<th>Prandtl number</th>
<th>Air * 0.708</th>
<th>Water * 6.78</th>
<th>scCO₂ ~ 4 - 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>0.00025</td>
<td>0.071</td>
<td></td>
</tr>
<tr>
<td>Nickel based alloy</td>
<td>0.00073</td>
<td>0.207</td>
<td>~0.3</td>
</tr>
<tr>
<td>Copper</td>
<td>0.00015</td>
<td>0.044</td>
<td></td>
</tr>
<tr>
<td>Glass</td>
<td>0.00419</td>
<td>1.190</td>
<td></td>
</tr>
<tr>
<td>Plexiglas</td>
<td>0.00942</td>
<td>2.680</td>
<td></td>
</tr>
</tbody>
</table>

* based on Kasagi et al., Journal of heat transfer, 1989

Prandtl number for CO₂ at 80 bar
Temperature rms values for constant properties

Reynolds decomposition of wall heat flux:

\[Q_w = \frac{1}{\alpha} \frac{\partial \bar{h}}{\partial r} \bigg|_w + \alpha' \frac{\partial h}{\partial r} \bigg|_w + \frac{\alpha}{\alpha} \frac{\partial h'}{\partial r} \bigg|_w \rightarrow \frac{\partial \bar{h} r^2}{\partial r} = -\frac{2}{\alpha} \frac{\bar{h}'}{\alpha'} \frac{\partial \bar{h}}{\partial r} \]
Temperature rms values for constant properties

Constant property flow (Pr=3.2)

\[\frac{\partial \overline{h'^2}}{\partial r} = 0 \]

\[\overline{h'^2} = c_0 + c_2 r^2 + \ldots \]

Supercritical fluid flow (Pr$_0$=3.2)

\[\frac{\partial \overline{h'^2}}{\partial r} = -\frac{2}{\alpha} \overline{h'} \frac{\partial \overline{h}}{\partial r} \]

\[\overline{h'^2} = c_0 + c_1 r + c_2 r^2 + \ldots \]
Radial heat fluxes

Total radial heat flux:

\[q_{r,tot} = \bar{\alpha} \frac{\partial \bar{h}}{\partial r} + \alpha' \frac{\partial \bar{h}'}{\partial r} - \rho u'' h'' \]

Constant property (CP) flow

Specified heat flux = 2.4

Iso-flux

Iso-thermal
Effect of wall thickness on temperature fluctuations

Dimensionless wall thickness:

\[y^{++} = \sqrt{\frac{\lambda_f}{\lambda_s}} \cdot y^+ \]

From Tiselj et al. 2001, JHT