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OVERVIEW

Equation of state (EOS) form the foundation for modeling the performance of carbon 
dioxide, and other, power cycles.  Commercial software packages such as Aspen Plus rely 
on EOSs to inform and predict states of matter and interactions between matter under 
given conditions.  Direct fired critical carbon dioxide systems offer unique challenges for 
standard equation of states found in the literature.  In particular, the Allam Cycle utilizes a 
high-purity carbon dioxide working fluid across a wide range of conditions, including 
temperatures from 30C to 1150C and pressure from atmospheric pressure to 300 bar.  
As with all direct fired systems, it will have impurities in the working fluid that impact key 
engineering variables that are derived from the chosen equation of state.  Peng-Robinson 
(PR) is a widely used EOS to describe the thermo-physical properties of pure CO2 and its 
mixtures in process modeling packages for power, oil, gas, and petrochemical industries 
applications. The most common methodology of calibrating the PR EOS in mixtures is by 
using binary interaction parameters (𝑘𝑖𝑗) which are typically experimentally derived in 

controlled volume systems and combined using the Van der Waals mixing rules.  However, 
inaccuracies in predictions from most calibrations increase when extrapolated outside of a 
narrow range of conditions, or when considering multi-species mixtures.  
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EXPERIMENTAL SETUP
This paper presents a unique and broadly applicable methodology, treating these 
calibration parameters not as static, or sometimes temperature-dependent, 
quantities, estimated in vitro, but instead as learned functions allowed access to 
arbitrary side information, which is termed herein as conditional calibration.
These functions are calibrated holistically, with respect to an entire system, 
rather than as independent scalar parameters learned through experiment, using 
the differentiability of the entire process model to enable gradient-based 
learning. In this work, it is demonstrated that a small but deep multi-layer neural 
network, generating the interaction parameters of a simple PR EOS-based model 
of a valve, significantly outperforms fixed parameter models in a pair of synthetic 
experiments. 

The first attempts to match a set of simulation data from a more sophisticated 
valve model using a simple model whose parameters are not fixed but 
generated, allowed access to temperature, pressure, and other features of the 
valve. The second adds an additional physically plausible pressure perturbation 
on top of the simulation. In both cases, the relative reductions in error are on the 
order of 40-50% to the simulated baseline by allowing the model to conditionally 
calibrate, while the fundamental physical grounding in cubic EOS models keeps 
the “black-box” learner reined in and easy to estimate, leveraging the best parts 
of machine learning and chemical process modeling. The aim is not only to offer 
a powerful methodology for empirically updating existing cubic equations of 
state with data from real plant environments, but also to advocate for a flexible, 
conditional, and differentiable approach to computational chemical engineering 
and process optimization in general.

RESULTS AND DISCUSSION
While the modeling technique imposes somewhat of an artificial constraint, it is 
meant to demonstrate several things: 
1. Laboriously calculated binary EOS parameters can be calibrated on-the-fly to 

custom, non-idealized systems with heterogeneous conditions and multi-
species mixtures in a way that is both less time consuming and more accurate 
within its area of data input.

2. Powerful conditional machine learning models like DNNs, allowing arbitrary 
covariates and side information to inform their predictions, can be safely 
“regularized”, trained on little data, and prevented from overfitting by 
allowing them to only affect certain parameters of a semi-empirical model 
derived from reasonable physical principles, like cubic EOS, rather than 
having to learn a whole DNN-based EOS from scratch with the attendant 
burdens of massive training data and apprehensions regarding non-
physicality. 

3. Tunable semi-physical degrees of freedom in a process model, rather than 
posing estimation challenges in vitro, should be looked at as opportunities to 
fit directly in vivo to complex systems through automatic differentiation, with 
modern machine learning methods providing powerful tools to condition on 
sensors and other side information.


