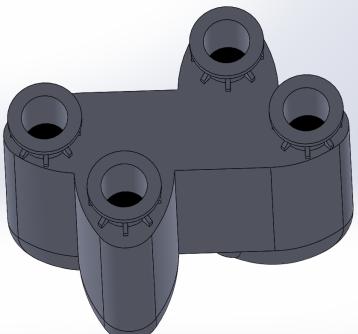
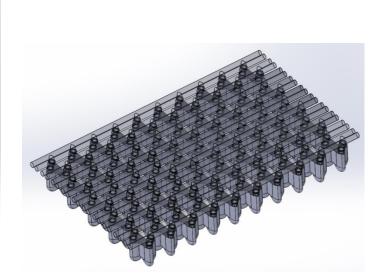


High Effectiveness, Compact, High Pressure and Low **Cost Super-Critical CO**₂ Recuperator


John T. Kelly, President **Altex Technologies Corporation**


Introduction

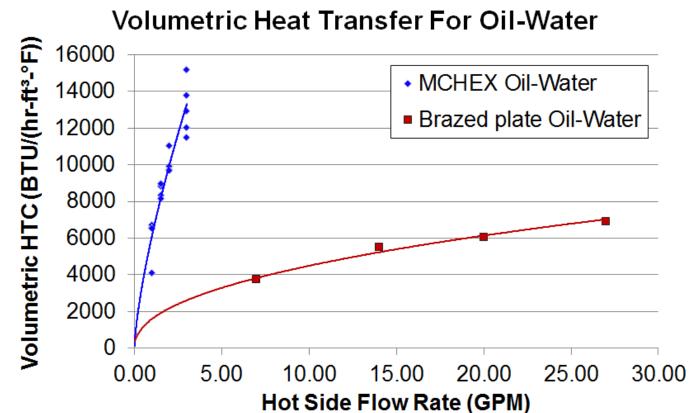
- 400 MWe RCBC plant requires 2,500 MWt of 200bar and **600C** capable recuperative heat exchangers
- Minichannels with small hydraulic diameter (dh) and surface enhancements needed for compactness and low cost – Effectiveness (Ntu), and Ntu (L, dh)
- Many millions of channels of 1mm dh required
- Must connect channels together manifolding important
- Need high strength under all operating temperatures
- **Recuperators must have lifetimes of 30 years limited** corrosion, erosion and fouling

Altex HELC Recuperator

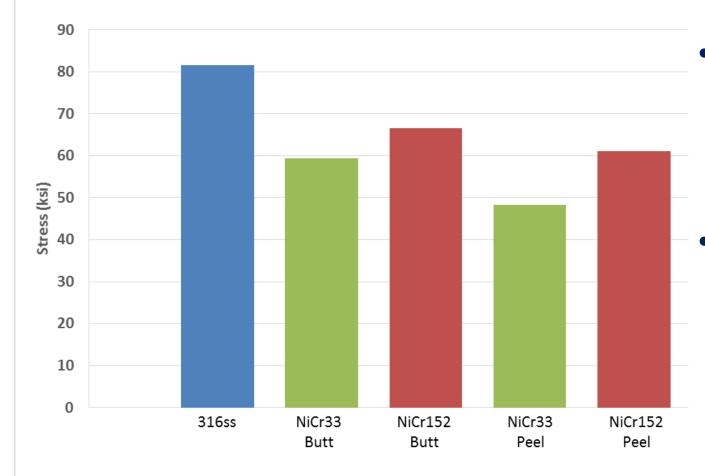
50 KW Test **Article Array**

50 MW Module

50 Module


- Plates and frames with integral manifolds and novel inserts
- Inserts optimized for high and low pressure channels
- Load Assisted Braze and Corrosion Barrier (LAB-CB) bonding process to limit surface preparation cost ahead of bonding components and provide corrosion protection
- Insert surface features used to enhance heat transfer at high thermal efficiency
- **Altex Case 3 surface features have better heat transfer** performance than smooth and wavy channels typically used in printed circuit heat exchangers

					-
Channel Surface Features	Smooth	1	2	3	Wavy
Heat Transfer (kWt)	4,804	5,006	5,006	5,212	5,143
Hot Side Pressure Drop (Bar)	0.20	0.40	0.35	0.71	0.91
Cold Side Pressure Drop (Bar)	0.34	0.66	0.58	1.17	1.51
Effectiveness (%)	89.8%	93.6%	93.6%	97.4%	96.1%
Cubic Meter/UA	0.00191	0.00152	0.00152	0.00107	0.00123
Kilograms/UA	28.0	22.3	22.3	15.6	18.1


Higher effectiveness with Case 3 will increase cycle efficiency

Brandon Masuda, Program Manager Altex Technologies Corporation

Results Summary

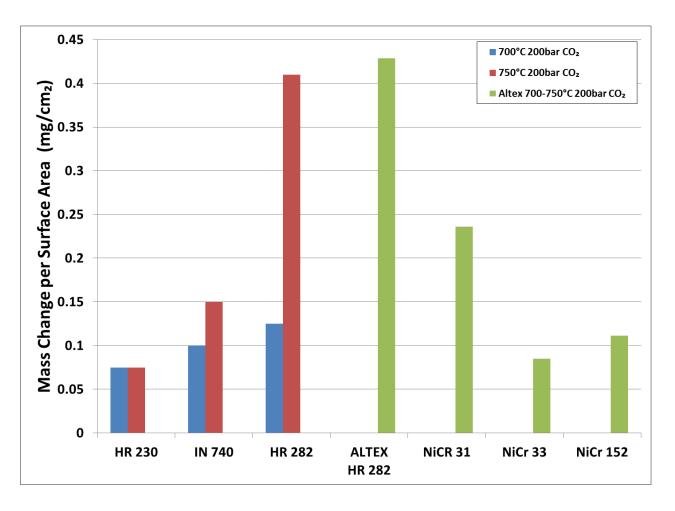
- High nickel braze compounds have compositions similar to high strength and corrosion resistant high nickel alloy
- Low cost iron base materials can produce oxides that are poorly adhering, spall and expose underlying base material to rapid corrosion
- Some expensive high nickel base materials have strongly adhering chrome, silicon and aluminum oxide layers that form barriers that slow subsequent oxygen diffusion and corrosion
- High nickel braze material has potential for strong joints and corrosion resistance

- **Braze compound for joint bonding** migrates upon melting
- Some areas still not completely covered
- Must fully coat parts ahead of braze furnace process for corrosion protection

- Can design 316 SS unit to meet 200 bar pressure requirement
- Can use LAB bonding to build 200 bar capable unit
- High base heat transfer rates tested
- Model predictions fit test results to within 10%

Alloy	Fe	Ni	Cr	AI	Мо	Mn	Si	w	Со	ті	Nb	Та	Hf	
Gr. 91	89.7	0.1	8.3		1	0.3	0.1							
HR230	1.5	60.5	22.6	0.3	1.4	0.5	0.4	12.3						
HR282	0.2	58	19.3	1.5	8.3	0.1	0.06		10.3	2.2				
IN740	1.9	48.2	23.4	0.8		0.3	0.5		20.2	2	2.1			
HR214	3.5	75.9	15.6	4.3		0.2	0.1							
CM247	0.07	59.5	8.5	5.7	0.7			9.9	9.8	1		3.1	1.4	
NiCr 31		71.5	22				6.5							
NiCr 33		64.5	29				6.5							
NiCr 152		66	30				4							
316SS	65.705	12	17		2.5	2	0.75							

- Butt and peel type braze joints are utilized in HELC
- High nickel braze compounds with chrome, silicon and aluminum can provide good strength and corrosion resistance
- NiCR33 and NiCr152 selected for testing because of chrome and silicon content
- NiCr152 has 82% and 75% of base 316 stainless steel material strength for butt and peel joints at room temperature
- At 910C, NiCr butt joints are 101% the strength of base 316 stainless steel material

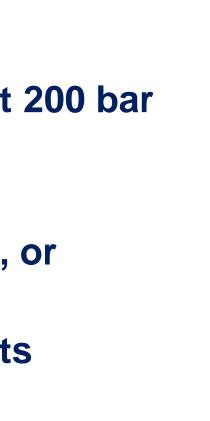


Results Summary

Ρ	Trace Elements	
	.02 Zr	
4.5		
6		
6		
0.045	0.08 C, 0.03 S, 0.1 N	

- **Corrosion test apparatus automatically operates at 200 bar** and 750C, with gas flow
- Can simultaneously test 50 samples
- Uses industrial grade CO2, or research grade CO2, or mixtures of gases
- Standard material weight gain corrosion test results consistent with literature values
- 316 SS corrosion on the order of 10 mg/cm2
- High nickel alloys have orders of magnitude lower corrosion weight gains
- **Altex LAB-CB process** reduces 316 SS base material corrosion to that consistent with high nickel alloys, at low cost

Conclusions and Plans


- HELC heat transfer performance better than smooth and wavy channel performance, used in PCHE heat exchangers
- Using high nickel braze, LAB-CB process can produce strong HELC component joints
- When components fully coated, corrosion resistance is as good as expensive high nickel alloys, at a much lower cost.
- Planning to optimize bonding and surface treatment material to minimize corrosion with lowest cost base material with the needed joint strength

Contact


Dr. John Kelly

Altex Technologies Corporation 244 Sobrante Way, Sunnyvale, California 94086 john@altextech.com / 408-328-8302

Pittsburgh, PA, USA

