Oxidation behavior of Fe- and Ni-base alloys in supercritical CO₂ and related environments

Gordon R Holcomb¹, Casey S Carney^{1,2}, Richard P Oleksak^{1,2}, Joseph H Tylczak,¹, and Ömer N. Doğan¹

Introduction

Heat engine power cycles, using a working fluid of supercritical carbon dioxide (sCO_2), have the potential for high thermodynamic efficiencies when configured as a (indirect) recompression Brayton cycle.

Two aspects of the oxidation behavior of alloys were compared between several indirect- and direct-cycle related environments.

- The critical Cr content needed in Ni alloys to achieve a compact and protective chromia scale
- The effect of surface finish on the oxidation behavior of Grade 91 ferritic-martensitic steel.

	Test	Gas composition	Gas Notes	Alloys	T, °C ∣	P, bar	Flow rate at T/P,
							cm/min
	sCO ₂	CO ₂	99.999% CO ₂	Ni-xCr	700	200	0.8
				91	550	200	0.7
	aCO ₂	CO ₂	99.999% CO ₂	Ni-xCr	700	1	25
				91	550	1	25
-	DF4	CO ₂ +4%H ₂ O+1%O ₂	Deionized H ₂ O	Ni-xCr	750	1	25
	DF4S	CO ₂ +4%H ₂ O+1%O ₂ +0.1%SO ₂	Deionized H ₂ O	Ni-xCr	750	1	25
	sH ₂ O	H ₂ O	Deaerated deionized H ₂ O	Ni-xCr	700	200	2
	Air	Laboratory air	Some H ₂ O present	Ni-xCr	700	1	0
			from relative humidity	91	550	1	0
			The second s				and the second se

U.S. DEPARTMENT OF

NERGY

/		1		Model Alloys						1	8				
		1 · · ·	 Mausi typ No allo imp con Ma for pro and mid con 	 Model alloys were produced using commercial production type techniques Not as pure as many model alloy studies, but with typical momercial alloys Made in ingots large enough processing such as forging and rolling to allow for microstructures found in commercial alloys The second s				 Commercial purity feed stocks Binary master alloys of NiCr and Fe-Cr made by VIM+ESR to reduce O and S levels Binary master alloys of NiCr and Fe-Cr made by VIM+ESR to reduce O and S levels Final alloys made with VIM by combining the master alloy with Ni, Fe, and/or Si (or sometimes hot top material from a previous melt) Wrought processing Computationally optimized homogenization heat treatment Machined to remove surface defects Wrapped in SS foil and preheated for 3 h Upset forged Forged flattened Step forged and squared in multiple operations to 1.25" Hot rolled to final size, ~0.1" 			stocks NiCr +ESR IM by loy or rial d ment ice eheated				
	Alloy	Ni	Cr	AI	Si	Mn	Со	Ti	Fe	Cu	С	N	0	S	
		wt%	wt%	wt%	wt%	wt%	wt%	wt%	wt%	wt%	ppm	ppm	ppm	ppm	
	91	0.14	8.46	0.01	.036	0.44			Bal	0.16	1000	545		20	
	Ni5Cr	Bal	5.00	0.02	< 0.01	0.02	0.03	0.01	< 0.01	0.01	38	8	6	3	
				0.04			0.40	0.04	.0.01	.0.04	222	20	62	12	
	Ni12Cr	Bal	12.08	0.01	< 0.01	0.01	0.12	< 0.01	< 0.01	< 0.01	233	20	62	12	
	Ni12Cr Ni14Cr	Bal Bal	12.08 14.09	0.01	<0.01 <0.01	0.01 <0.01	0.12	<0.01 <0.01	< 0.01	<0.01	233 311	26	15	7	
	Ni12Cr Ni14Cr Ni16Cr	Bal Bal Bal	12.08 14.09 16.04	0.01 0.02 0.02	<0.01 <0.01 <0.01	0.01 <0.01 <0.01	0.12 0.14 0.22	<0.01 <0.01 0.01	<0.01 <0.01 0.02	<0.01 <0.01 <0.01	233 311 226	26 29 43	15 65	13 7 15	
	Ni12Cr Ni14Cr Ni16Cr Ni18Cr	Bal Bal Bal Bal	12.08 14.09 16.04 18.13	0.01 0.02 0.02 0.04	<0.01 <0.01 <0.01 <0.01	0.01 <0.01 <0.01 <0.01	0.12 0.14 0.22 0.25	<0.01 <0.01 0.01 <0.01	<0.01 <0.01 0.02 0.02	<0.01 <0.01 <0.01 0.01	233 311 226 270	20 29 43 50	62 15 65 17	13 7 15 8	
	Ni12Cr Ni14Cr Ni16Cr Ni18Cr Ni20Cr	Bal Bal Bal Bal Bal	12.08 14.09 16.04 18.13 20.08	0.01 0.02 0.02 0.04 0.03	<0.01 <0.01 <0.01 <0.01 <0.01	0.01 <0.01 <0.01 <0.01 <0.01	0.12 0.14 0.22 0.25 0.26	<0.01 <0.01 <0.01 <0.01 <0.01	<0.01 <0.01 0.02 0.02 0.05	<0.01 <0.01 <0.01 0.01 0.01	233 311 226 270 228	20 29 43 50 72	62 15 65 17 44	13 7 15 8 12	
	Ni12Cr Ni14Cr Ni16Cr Ni18Cr Ni20Cr Ni22Cr	Bal Bal Bal Bal Bal Bal	12.08 14.09 16.04 18.13 20.08 22.10	0.01 0.02 0.02 0.04 0.03 0.05	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01	0.01 <0.01 <0.01 <0.01 <0.01 <0.01	0.12 0.14 0.22 0.25 0.26 0.39	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01	<0.01 <0.01 0.02 0.02 0.05 0.16	<0.01 <0.01 <0.01 0.01 <0.01 <0.01	233 311 226 270 228 149	20 29 43 50 72 88	62 15 65 17 44 27	13 7 15 8 12 12	

¹US Department of Energy, National Energy Technology Laboratory, Albany OR; ²AECOM Corporation, Albany OR

Research & **Innovation Center**

Research & Innovation Center

Science & Engineering To Power Our Future

Research & Innovation Center

HTR high-temperature recuperator, LTR low-temperature recuperator, MC main compressor, PC primary cooler, PHX primary heat exchanger, RC recycle compressor, T turbine

· Widely proposed for Concentrated Solar and Nuclear Energy due to their relatively

• The split recuperator allows a portion of the high pressure sCO₂ to bypass the LTR to

· For Fossil Energy applications, consideration must be given to use the significant thermal energy remaining in the combustion flue gas after passing through the PHX

 Semi-open sCO, Brayton Cycle Oxycombustion using O₂ instead of air to burn fuel

ASU air separation unit, C compressor, HTR high-temperature recuperator, LTR lowtemperature recuperator, T turbine

· More akin to gas turbines (indirect cycles more akin to steam turbines) Higher turbine inlet temperatures and thus higher efficiencies · High pressure sCO₂ output allows for CO₂ transport and sequestration • Working fluid not pure CO₂, but contains other combustion products including H₂O

High Temperature Components T as high as ~1250°C

P as high as 350 bar

Science & Engineering To Power Our Future

HTR high-temperature recuperator, LTR low-temperature recuperator, MC main compressor, PC primary cooler, PHX primary heat exchanger, RC recycle compressor, T turbine

> ASU air separation unit, C compressor, HTR high-temperature recuperator, LTR lowtemperature recuperator, T turbine

Research & **Innovation Center**

Science & Engineering To Power Our Future