Oxidation behavior of Fe- and Ni-base alloys in supercritical CO$_2$ and related environments

Gordon R Holcomb1, Casey S Carney1,2, Richard P Oleksak1,2, Joseph H Tylczak1, and Ömer N. Doğan1

1US Department of Energy, National Energy Technology Laboratory, Albany OR; 2AECOM Corporation, Albany OR

Introduction
Heat engine power cycles, using a working fluid of supercritical carbon dioxide (sCO$_2$), have the potential for high thermodynamic efficiencies when configured as a (indirect) recompression Brayton cycle. Two aspects of the oxidation behavior of alloys were compared between several indirect- and direct-cycle related environments.
- The critical Cr content needed in Ni alloys to achieve a compact and protective chromia scale.
- The effect of surface finish on the oxidation behavior of Grade 91 ferritic-martensitic steel.

sCO$_2$ Power Cycles - Indirect

<table>
<thead>
<tr>
<th>Test Gas composition</th>
<th>Gas Notes</th>
<th>Alloys</th>
<th>T, °C</th>
<th>P, bar</th>
<th>Flow rate at T/P, cm/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO$_2$ + 1% O$_2$</td>
<td></td>
<td>Ni-xCr</td>
<td>700</td>
<td>200</td>
<td>25</td>
</tr>
<tr>
<td>CO$_2$ + 1% O$_2$ + 0.1% SO$_2$</td>
<td>Deaerated deionized H$_2$O</td>
<td>Ni-xCr</td>
<td>700</td>
<td>200</td>
<td>25</td>
</tr>
<tr>
<td>CO$_2$ + 1% O$_2$ + 0.1% SO$_2$</td>
<td>Deaerated deionized H$_2$O</td>
<td>Ni-xCr</td>
<td>700</td>
<td>200</td>
<td>25</td>
</tr>
<tr>
<td>CO$_2$ + 1% O$_2$</td>
<td>Deionized H$_2$O</td>
<td>Ni-xCr</td>
<td>700</td>
<td>200</td>
<td>25</td>
</tr>
<tr>
<td>CO$_2$</td>
<td></td>
<td>Ni-xCr</td>
<td>700</td>
<td>200</td>
<td>25</td>
</tr>
<tr>
<td>CO$_2$</td>
<td></td>
<td>Ni-xCr</td>
<td>700</td>
<td>200</td>
<td>25</td>
</tr>
</tbody>
</table>

sCO$_2$ Power Cycles - Direct

<table>
<thead>
<tr>
<th>Test Gas composition</th>
<th>Gas Notes</th>
<th>Alloys</th>
<th>T, °C</th>
<th>P, bar</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO$_2$ + 1% O$_2$</td>
<td></td>
<td>Ni-xCr</td>
<td>700</td>
<td>200</td>
</tr>
<tr>
<td>CO$_2$ + 1% O$_2$</td>
<td>Deionized H$_2$O</td>
<td>Ni-xCr</td>
<td>700</td>
<td>200</td>
</tr>
</tbody>
</table>

Critical Cr Content in Ni Alloys

- The oxidation responses of Ni-xCr model alloys (where x varied from 5 to 24 wt%) were compared in six high temperature environments.
- When H$_2$O or O$_2$ was part of the gas phase, a transition to protective kinetics occurred somewhere between 5-12Cr in DF4, DF4S and air, and at 14Cr in sH$_2$O.
- The oxygen activity in sCO$_2$ and sH$_2$O were similar, so H$_2$O was more aggressive than CO$_2$ for the Ni-5Cr alloy.
- The ability to remain protective at low Cr values indicates that nickel base superalloys may be resilient to damage that exposes near-surface alloy that is depleted Cr—especially in pure CO$_2$.

Surface Finish of Grade 91 Ferritic Steel

- The mass gains in air were much lower than in CO$_2$ environments.
- The Ni-5Cr alloy in pure CO$_2$ environments (sCO$_2$ and aCO$_2$) was at least somewhat protective, while it was unprotective in the other environments.

Summary

- The oxidation responses of Ni-xCr model alloys (where x varied from 5 to 24 wt%) were compared in six high temperature environments.
- The Ni-5Cr alloy in pure CO$_2$ environments (sCO$_2$ and aCO$_2$) was at least somewhat protective, while it was unprotective in the other environments.
- When H$_2$O or O$_2$ was part of the gas phase, a transition to protective kinetics occurred somewhere between 5-12Cr in DF4, DF4S and air, and at 14Cr in sH$_2$O.
- The oxygen activity in sCO$_2$ and sH$_2$O were similar, so H$_2$O was more aggressive than CO$_2$ for the Ni-5Cr alloy.
- The ability to remain protective at low Cr values indicates that nickel base superalloys may be resilient to damage that exposes near-surface alloy that is depleted Cr—especially in pure CO$_2$.
- The oxidation responses of ferritic steel Grade 91, with three different surface finishes, were compared in three different environments at 550 °C.
- The mass gains in air were much lower than in CO$_2$ environments.
- The benefits of near surface cold work were observed—the samples with the most cold work had the smallest mass gains in all three environments.
- This indicates that surface enhancements to induce more residual stress, such as shot peening, may be of benefit for 9-12Cr ferritic-martensitic steels in sCO$_2$.

Acknowledgements

This work was performed in support of the US Department of Energy’s Fossil Energy Crosscutting Technology and Advanced Turbine Research Programs. The Research was executed through NETL Research & Innovation Center’s Advanced Alloy Development Field Work Proposal. Research performed by AECOM Staff was conducted under the RES contract DE-FE-0004000.

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
• Recompression sCO_2 Brayton Cycle
 • Widely proposed for Concentrated Solar and Nuclear Energy due to their relatively narrow temperature range requirements
 • The split recuperator allows a portion of the high pressure sCO_2 to bypass the LTR to balance its heat duty and improve efficiency
 • For Fossil Energy applications, consideration must be given to use the significant thermal energy remaining in the combustion flue gas after passing through the PHX

HTR high-temperature recuperator, LTR low-temperature recuperator, MC main compressor, PC primary cooler, PHX primary heat exchanger, RC recycle compressor, T turbine
Semi-open sCO₂ Brayton Cycle
- Oxycombustion using O₂ instead of air to burn fuel
- More akin to gas turbines (indirect cycles more akin to steam turbines)
- Higher turbine inlet temperatures and thus higher efficiencies
- High pressure sCO₂ output allows for CO₂ transport and sequestration
- Working fluid not pure CO₂, but contains other combustion products including H₂O

ASU air separation unit, C compressor, HTR high-temperature recuperator, LTR low-temperature recuperator, T turbine
HTR high-temperature recuperator, LTR low-temperature recuperator, MC main compressor, PC primary cooler, PHX primary heat exchanger, RC recycle compressor, T turbine

ASU air separation unit, C compressor, HTR high-temperature recuperator, LTR low-temperature recuperator, T turbine