Tutorial: Fundamentals of Supercritical CO₂

March 26, 2018

Jason C. Wilkes, Ph.D.

jason.wilkes@swri.org

Southwest Research Institute

Abstract

The recent interest to use supercritical CO_2 (s CO_2) in power cycle applications over the past decade has resulted in a large amount of literature that focuses on specific areas related to s CO_2 power cycles in great detail. Such focus areas are demonstration test facilities, heat exchangers, turbomachinery, materials, and fluid properties of CO_2 and CO_2 mixtures, to name a few. As work related to s CO_2 power cycles continues, more technical depth will be emphasized in each focus area, whereas those unfamiliar with the topic are left to undertake the large task of understanding fundamentals on their own.

The following content provides an introductory tutorial on sCO_2 used in power cycle applications, aimed at those who are unfamiliar or only somewhat familiar to the topic. The tutorial includes a brief review of CO_2 and its current industrial uses, a primer on thermodynamic power cycles, an overview of supercritical CO_2 power cycle applications and machinery design considerations, and a summary of some of the current research and future trends.

The views and opinions expressed in this document are those of the authors and do not necessarily reflect the official policy or position of Southwest Research Institute

This tutorial provides an introduction to sCO₂ in power cycle applications

CO₂ and supercritical CO₂ (sCO₂)

sCO₂ loop hardware

Power cycle applications

Research and future trends

CO₂ General Information

CO₂ is a gas at atmospheric conditions with a concentration of ≈ 400 ppm

Image source [1-1]

There are both industrial and natural contributors and consumers of CO₂ in our atmosphere

Fossil fuel combustion is the largest industrial contributor to CO₂ production

Source: "U.S. Climate Action Report 2014"

Transportation (petroleum) and electricity generation (coal) majority contributors of CO₂

CO₂ has human exposure limits, but is classified at "non-toxic"

Notes:

- [1] Reference safety standards: OSHA, ACGIH, NIOSH (USA)
- [2] Reference study by Lambertsen (1971)

What is Supercritical CO₂?

CO₂ is supercritical if the pressure and temperature are greater than the critical values

Fluids operating near their critical point have dramatic changes in enthalpy

CO₂ density sharply decreases near the critical point

CO₂ viscosity decreases through the critical point

CO₂ thermal conductivity is enhanced near the critical region

CO₂ thermal conductivity is enhanced near the critical region

Power Cycle Basics

Power Cycle Basics Overview

Ideal vs. actual cycle

Cycle variations

Carnot Cycle

- Processes
 - (1-2) Isothermal heat addition
 - (2-3) Isentropic expansion
 - (3-4) Isothermal heat rejection
 - (4-1) Isentropic compression
- Not practical to build
- Most efficient heat engine

$$\eta_{\text{th,Carnot}} = 1 - T_L/T_H$$

↓T_I: Available heat sink?

↑T_H: Available heat source?

Materials?

$$W_{net} = W_{turb} - W_{comp}$$

Brayton Cycle (Ideal)

- □ Processes
 - (1-2) Isentropic compression
 - (2-3) Const. pres. heat addition
 - (3-4) Isentropic expansion
 - (4-1) Const. pres. heat reject.
- □ Open- or closed-loop

 $\eta_{th,Brayton} = 1 - PR^{(1-k)/k}$

 \uparrow PR, \uparrow k: \uparrow η_{th}

Optimal PR for net work

Rankine Cycle (Ideal)

- Processes
 - (1-2) Isentropic compression
 - (2-3) Const. pres. heat addition
 - (3-4) Isentropic expansion
 - (4-1) Const. pres. heat reject.
- Same processes as Brayton; different hardware
- □ Phase changes
- □ E.g., steam cycle

Ideal vs. Actual Processes

2-3, 4-1: Pressure losses

Power Cycle Variations

- □ Regeneration
- Intercooling
- Reheating
- □ Recompression

□ What is supercritical power cycle?

Brayton Cycle + Regeneration

Regenerator = recuperator

Effectiveness:

$$\varepsilon = (h_5 - h_2)/(h_4 - h_2)$$

Figure reference: Cengel and Boles (2002)

Intercooling & Reheating... Two Sides of the Same Coin

Multi-Stage Intercooling & Reheating

Approximates Ericsson cycle

 $\eta_{\text{th,Ericsson}} = \eta_{\text{th,Carnot}}$

Figure reference: Cengel and Boles (2002)

Brayton Cycle + Regeneration + Intercooling + Reheating

Recompression in Brayton Cycle

What is a Supercritical Power Cycle?

sCO₂ Power Cycles

Why sCO₂ for Power Cycles?

Property	Effect
High density, low viscosity, high CP near C.P.	 Reduced compressor work, increased W_{net} Allow more-compact turbomachinery to achieve same power Less complex – e.g., fewer compressor and turbine stages, may not need intercooling
Near- ambient T _{crit}	 Good availability for most temperature sinks and sources
Abundant fluid with low GWP	• Low cost
Familiar	 Experience with standard materials, though not necessarily at high temp. & high pressure

CO₂ Cost Comparison*

*Based on market pricing for laboratory-grade substance

Calculated sCO₂ efficiencies close to a steam cycle for potentially less \$/kW

Relative Size of Components

SwRI

Adapted from Dostal (2004)

Source: Wright (2011)

Example: 10 MWe Turbine Comparison

Source: Persichilli et al. (2012)

sCO₂ in Power Cycle Applications

Supercritical CO₂ in Power Cycle Applications

Concentrated Solar Power

Nuclear

[6-4]

Fossil Fuel

Ship-board ⁶ Propulsion

Geothermal

Waste Heat Recovery [6-11]

Supercritical CO2 Power Cycle Applications

Heat Source Operating Temperature Range & Efficiency

Assumptions (Turbomachinery Eff (MC 85%, RC 87%, T 90%), Wright (2011)

Supercritical CO₂ in Power Cycle Applications

Concentrated Solar Power

Nuclear

Fossil Fuel

Ship-board Propulsion

[6-4]

Geothermal

Waste Heat Recovery [6-11]

Why would we use solar power?

Concentrated Solar Power (CSP)

- □ The Sun-Motor (1903)
 - Steam Cycle
 - Pasadena, CA
 - Delivered 1400 GPM of water
- □ Solar One (1982)
 - 10 MW_e water-steam solar power tower facility
 - Barstow, CA
 - Achieved 96% availability during hours of sunshine
- □ Solar Two (1995)
 - Incorporated a highly efficient (~99%) molten-salt receiver and thermal energy storage system into Solar One.

Image source: [6-6]

Image source: [6-7]

sCO₂ CSP Process Diagram

Dual-shaft, tower receiver sCO₂ Brayton Cycle solar thermal power system with thermal energy storage, Zhiwen and Turchi (2011)

The transient challenges of a concentrated solar power plant are significant

Optimal Cycle Configuration with varying Compressor Inlet Temperature

- SAM modeling of typical sites shows an annual average compressor inlet temperature to be 37-38°C assuming 15°C approach temperature in the cooler
- Cycle Modeling
 - Optimal flow split
 - 22-33%
 - Heavily dependent on CIT
 - Optimal PR
 - Varies with use of intercooling
 - Intercooled cycles are more efficient on hot days, and less efficient on cool days

CSP Compressor Inlet Variation and Turbomachinery Performance

Figure 5: Comparison of Operating Range and Pressure Ratio Requirements [Modified from Japikse^[5]]

- To manage this challenge, numerous strategies will be required
 - Inventory Control
 - Inlet Guide Vanes
 - Variable Diffuser Vanes
 - Variable Speed Compression
 - Novel Control Features

Conceptual 10 MW_e Integrally Geared Compressor Applied to Recuperated Brayton Cycle

What are the key challenges to CSP sCO2 cycles

- Variable inlet temperature creates numerous cycle challenges
 - Dry cooling mandatory
 - Compressor operation near the critical point requires careful cycle control (not yet demonstrated)
- Heat addition to the sCO2 while incorporating thermal energy storage is challenging
- □ Turbine inlet temperatures approaching 750° with very high cycle efficiency requirements expected.

Supercritical CO₂ in Power Cycle Applications

Concentrated Solar Power

Nuclear

Fossil Fuel

Ship-board Propulsion

[6-4]

Geothermal

Waste Heat Recovery [6-11]

Rankine Cycle Application: Nuclear Power Generation

Image source: [6-8]

sCO₂ for Nuclear Applications (550°C-700°C, 34 MPa)

Image source: [6-9]

Image source: [6-4]

Proposed Nuclear sCO₂ Cycles

- □ Direct Cycle
 - No primary and secondary Na loops
 - Lower Void Reactivity

Reactor
Core
Cooled by
S-CO₂

Gas Turbine
Cooling
Water
Cooled by
Recuperator

- □ Indirect Cycle
 - Primary Na loop
 - Smaller core size

Kato et al. (2007)

Advantages of CO₂ Cycle vs. Helium Cycle in Nuclear Applications

Pro	Con
Smaller turbomachinery than steam or helium	Helium preferred to CO ₂ as a reactor coolant for cooling capability and inertness
CO ₂ Brayton cycles are more efficient than helium at medium reactor temperatures	CO ₂ requires a larger reactor than helium or an indirect cycle
CO ₂ is 10× cheaper than Helium	New technology

Supercritical CO₂ in Power Cycle Applications

Concentrated Solar Power

Nuclear

Fossil Fuel

Ship-board Propulsion

[6-4]

Geothermal

Waste Heat Recovery [6-11]

Oxy-Fuel Combustion

Conventional Combustion

Oxy-Fuel Combustion

Direct Oxy-Fuel Combustion

Allam Cycle (NetPOWER)

[Fetvedt 2016]

The Allam Cycle (NetPOWER)

[Fetvedt 2016]

Component Development

Indirect Oxy-Fuel Combustion

Zero Emission Oxy-Coal Power Plant with Supercritical CO₂ Cycle, Johnson et al. (2012)

What are the key challenges for oxyfuel sCO2 cycles

- □ Very high combuster and expander temperatures (1200°C)
 - Film cooling mandatory
 - Containment challenges
 - Sealing challenges
- Unproven combustion dynamics
- Complex auxiliary hardware

Supercritical CO₂ in Power Cycle Applications

Concentrated Solar Power

Nuclear

[6-4]

Fossil Fuel

Ship-board Propulsion

Geothermal

Waste Heat Recovery [6-11]

Ship-board Propulsion

- □ Nuclear sCO₂ cycles?
- Improved power to weight
- Rapid startup

Helium turbine: 17 stages / 333 MW (167 MW_e) X.L.Yan, L.M. Lidsky (MIT) (without casing)

Supercritical CO₂ turbine: 4 stages / 450 MW (300 MW_e) (without casing) Compressors are of comparable size

Source: Dostal (2004)

Key challenges to sCO2 nautical applications

- □ Weight
- Startup transient response times
- □ Impulse load robustness
- □ Containment (ships do get hit)

Supercritical CO₂ in Power Cycle Applications

Concentrated Solar Power

Nuclear

[6-4]

Fossil Fuel

Ship-board Propulsion

Geothermal

Waste Heat Recovery [6-11]

Geothermal

- □ Low Temperature Heat Source
 - T≈ 210°C, P≈ 100 bar

US Geothermal Resources

Global Geothermal Resources

ECO2G

Conventional Hydrothermal

Closed-Loop Supercritical CO₂

P-v & T-s Diagram

© Southwest Research Institute 2012

How does a Thermosiphon Work

Performance ECO2G

- Power Production
- Electrical power is typically 1 to 2 MWe per well
- Electrical power can exceed 5 MWe for some cases
- □ Financial Projections
- •25 Year LCOE ranges from \$0.05 -\$0.10/kWh

Benefits of s-CO2 Based Geothermal

- Highly Compressible
 - Produces a strong thermosiphon
- Inexpensive
- □ High-Efficiency, Small Turbines
- □ No Process Water
- Outperforms Hydrothermal
 - Steam (flash tank) and binary (ORC) cycles
- Environmentally Friendly
 - Relatively Inert
 - No Process Water
 - Zero Emissions
 - Small Footprint

Challenges to sCO2 goethermal

 □ Drilling technology is very expensive and (probably) not a sure thing.

Supercritical CO₂ in Power Cycle Applications

Concentrated Solar Power

Nuclear

[6-4]

Fossil Fuel

Ship-board Propulsion

Geothermal

Waste Heat Recovery

Waste Heat Recovery (Bottoming)

- □ Rankine Cycle Description
 - 1. Liquid CO₂ is pumped to supercritical pressure
 - 2. sCO2 accepts waste heat at recuperator and waste heat exchanger
 - 3. High energy sCO₂ is expanded at turboalternator producing power
 - 4. Expanded sCO₂ is cooled at recuperator and condensed to a liquid at condenser

COOLED

Key challenges to sCO2 bottoming cycles

- □ Efficiencies and costs must compete with with steam/ORC at relevant temperatures
- Unproven technology must move into a field with proven WHR solutions (steam/ORC)
 - Since WHR is not the primary asset in nearly any implementation, shutting down production or heat generation for an unproven benefit is challenging.

Other sCO₂ Power Cycle Applications

Non-Concentrated Solar Power

Combined Heat & Power

sCO₂ Rankine Cycle in Non-**Concentrated Solar Power**

□ NCSP (Trans-critical Rankine) T_f = 180°C

• $\eta_{e,exp} = 8.75\% - 9.45\%$

□ Photovoltaic

• $\eta_{e,exp} = 8.2\%$

sCO₂ Rankine Cycle in Combined Heat and Power (CHP)

- □ Electrical efficiency
 - Higher than ordinary steam CHP
 - Cascaded s-CO2 plant performed best

sCO₂ as a Refrigerant

Image source: [6-13]

Image source: [6-14]

sCO₂ vs R-22 in Refrigeration

- □ Employed MCHEs
- □ Summary
 - CO₂ COP vs. R-22
 - -42% Lower at 27.8°C
 - -57% Lower at 40.6°C
 - Majority of entropy generation in CO2 cycle was in the expansion device

Brown (2002)

sCO₂ in Heat Pumps

- sCO₂ replaced as a refrigerant in domestic heat pump hot water heater in Japan.
 - $COP = 8,90^{\circ}C (194^{\circ}F)$
 - Compared to COP_{typ}=4-5

$$\left(COP = \frac{Q_h + W_e}{W_e}\right)$$

Image source: [6-14]

EcoCute Heat Pump (2007)

Supercritical CO₂ Power Cycles Symposium

sCO₂ Power Cycle Research Efforts

Development of a High Efficiency Hot Gas Turbo-expander and Low Cost Heat Exchangers for Optimized CSP SCO₂ Operation

J. Jeffrey Moore, Ph.D. Klaus Brun, Ph.D. Pablo Bueno, Ph.D. Stefan Cich Neal Evans Kevin Hoopes

C.J. Kalra, Ph.D., Doug Hofer, Ph.D. Thomas Farineau

General Electric

John Davis Lalit Chordia

Thar Energy

Brian Morris Joseph McDonald Ken Kimball

Bechtel Marine

Taken from SunShot Subprogram Review: Concentrating Solar Power (Sunshot Grand Challenge Summit Anaheim, CA, May 19-22, 2014)

Project Objectives

- To develop a novel, high-efficiency supercritical sCO_2 turbo-expander optimized for the highly transient solar power plant duty cycle profile.
 - This MW-scale design advances the state-of-the-art of sCO₂ turbo-expanders from TRL3 to TRL6.
- To optimize compact heat exchangers for sCO₂ applications to drastically reduce their manufacturing costs.
- The turbo-expander and heat exchanger will be tested in a I-MWe test loop fabricated to demonstrate component performance and endurance.
- Turbine is designed for 10 MW output in order to achieve industrial scale
- The scalable sCO₂ expander design and improved heat exchanger address and close two critical technology gaps required for an optimized CSP sCO₂ power plant
- Provide a major stepping stone on the pathway to achieving CSP power at \$0.06/kW-hr levelized cost of electricity (LCOE), increasing energy conversion efficiency to greater than 50% and reducing total power block cost to below \$1,200/kW installed.

Project Approach

- Work has been divided into three phases that emulate development process from TRL3 to TRL6
- Phase I Turbomachinery, HX, and flow loop design (17 months)
- Phase II Component fabrication and test loop commissioning (12 months)
- Phase III Performance and endurance testing (6 months)

Recuperator Prototypes – 5 and 50 kW

DMLS:

- Expensive and slow to build
- Highly automated
- High pressure drop
- Tested to 5000 psi

Laser Welded Construction:

- Undergoing flow tests
- Exceeded design predictions for HTC
- Held 2500 psi @ 600° F

TURBOEXPANDER DESIGN

- A novel turboexpander has been designed to meet the requirements of the sCO2 power with these targets:
- ~14MW shaft power
- >700C inlet temp
- >85% aero efficiency

Multi-stage Axial Turbine

DGS Face Pressure Distribution from CFD

CFD Analysis

10 MW SCO2 Turbine Concept

Test Loop Design

Mechanical Test Configuration

DOE sCO₂ Test Program

- Research compression loop
 - Turbomachinery performance
- □ Brayton cycle loop
 - Different configurations possible
 - Recuperation, Recompression, Reheat
 - Small-scale proof-of-technology plant
 - Small-scale components
 - Different than hardware for commercial scale

DOE sCO₂ Test Program Turbomachinery

Source: Wright (2011)

sCO₂ Brayton Cycle Test Loop

Source: Wright (2011)

sCO₂ Brayton Cycle Test Loop

sCO₂ Brayton Cycle Performance with Regeneration Config.

Maximum Case: Total Turbine Work, 92 kW

Improve with larger scale:

- Windage losses
- Thermal losses
- Seal leakage

Source: Conboy et al. (2012)

DOE sCO₂ Test Program Summary

- Major milestones
 - Test loops operational
 - Demonstrate process stability/control
- □ Areas for future development
 - Heat exchanger performance
 - Larger scale test bed
 - Utilize commercial-scale hardware
 - Demonstrate more-realistic (better) performance
 - CO₂ mixtures

Printed Circuit Heat Exchanger (PCHE)

sCO₂ test loop used by Sandia/ Barber-Nicholls

Le Pierres (2011)

Heat Exchanger Testing (Bechtel)

- □ 150 kW
- □ 8000 lbm/hr sCO₂
- □ 2500 psi

Tokyo Institute of Technology (TIT)

Supercritical CO₂ Cycle Mockup Test Loop

- 1. Compressor work reduction around the critical point,
 - 2. Pressure drop performance of new MCHE

(Kato et al., 2007)

Corrosion Loop at Tokyo Institute of Technology

316 SS, 12% Cr alloy, 200-600°C, 10 Mpa CO₂, Kato et al. (2007)

Other sCO₂ Corrosion Test Facilities

- MIT 650°C, 22 MPa
 - Steels
- □ UW 650°C, 27 MPa
 - Steels

Guoping (2009)

- □ French Alternative Energies and Atomic Energy Commission 550°C, 25 MPa
 - Steels
- MDO Labs 54.4°C, 12.4 MPa
 - Elastomers, engineering plastics, rubbers, etc.

Geothermal Research

- Explore the feasibility of operating enhanced geothermal systems (EGS) with CO₂ as heat transmission fluid
- Collaboration between LBNL (Pruess), UC Berkeley (Glaser), Central Research Institute of the Electric Power Industry, Japan (Kaieda) and Kyoto University (Ueda)
 - UC Berkeley: laboratory testing of CO₂ heat extraction
 - Japan: inject brine-CO₂ mixtures into Ogachi HDR site (T ≈ 210°C, P ≈ 100 bar)
 - LBNL: model reactive chemistry induced by brine-CO₂ injection

Schematic of EGS with sCO₂

Pruess (May 19, 2010)

Ogachi, Japan – HDR Site

Pruess (May 18, 2010)

sCO₂ Critical Flow (Univ. Wisconsin)

 Some tests were conducted with a target plate located in front of the jet to measure the reaction force

View of the opening systems

4/21/2009

(Anderson, 2009)

Future Trends for sCO₂ Power Cycles

Future trends and research needs

Intermediate-scale is needed to demonstrate commercial viability of full-scale technologies (i.e. 10 Mwe)

Materials

- □Long term corrosion testing (10,000 hrs)
- □Corrosion of diffusion-bonded materials (PCHE HX)
- □Coatings to limit/delay corrosion
- □Corrosion tests under stress

Heat Exchangers

- □Improved heat transfer correlations near the critical region for varying geometries
- □Improve resolution of local heat transfer measurements
- ☐ Heat exchanger durability studying effects of material, fabrication, channel geometry, fouling, corrosion, and maintenance

Rotordynamics

□Analysis of rotor-dynamic cross-coupling coefficients for sCO₂

Pulsation analysis

□ Development of transient pipe flow analysis models for sCO₂

Future trends and research needs

Control System and Simulation

- □Detailed models of turbo machinery
- □Improved transient analysis surge, shutdown events

Fluid properties

- ■Mixture of sCO₂ and other fluids
- \square Physical property testing of CO₂ mixtures at extreme conditions with significantly reduced uncertainties (i.e. \leq 1%)

10 MW Scale Pilot Plant

Summary

Both supercritical power cycles and the use of sCO₂ are not new concepts

sCO₂ is used in a variety of industries as a solvent

sCO₂ is desirable for power cycles because of its near-critical fluid properties

sCO₂ power cycles can be applied to many heat sources and have a small footprint

The near ambient critical temperature of CO₂ allows it to be matched with a

variety of thermal heat sources

The combination of favorable property variation and high fluid density of sCO₂ allows small footprint of machinery

222

The near future goal is to improve understanding and develop commercial-scale power

International sCO₂ power cycle research is ongoing

Power production test loops Materials corrosion test facilities

Machinery component test loops Fluid property testing

More research is needed sCO₂ power cycle applications

Intermediate scale (10MW) demonstration

Materials testing at high temperature, pressure and stress

Property testing with sCO₂ mixtures

Rotordynamics with sCO₂

sCO₂ heat transfer and heat exchangers

More detailed dynamic simulation and control systems

Questions?

