

DESIGN OF A SUPERCRITICAL CO₂ COMPRESSOR FOR USE IN A 10 MWe POWER CYCLE

Stefan D. Cich Jeff Moore, PhD Jason Mortzheim Doug Hofer, PhD

Power Cycle

- 10 MWe, Re-compression Brayton Cycle
- Main Components
 - High and Low Temperature Recuperator
 - Main and Bypass Compressor
 - High Temperature Turbine

- Main Compressor Conditions
 - Inlet: 95°F and 1,240 psi
 - Exit: 172°F and 3,500 psi
 - 156 lbm/s
- Bypass Compressor Conditions
 - Inlet: 190°F and 1,260 psi
 - Exit: 381°F and 3,480 psi
 - 75.4 lbm/s

sCO₂ Properties

sCO₂ Properties

Design Goals

- Compressor to be directly driven by turbine
 - Only one skid required for the turbine and compressor train
 - Smaller overall footprint
 - No need for high speed gearbox
 - Compressor will be designed for operating speed of 27,000 rpm to match turbine
- Single compressor casing to house both main and re-compressor
 - Only need one high pressure casing which will reduce overall cost
- Variable Inlet Guide Vanes
 - Directly coupled means speed control in not a possibility
 - Variable IGVs are commonly used in other applications to maintain performance over a wide range of operating conditions

Design Disciplines

Design Disciplines

- Design must meet requirements of aerodynamics, rotordynamics, and mechanical design
- Each discipline has certain design goals that counteract each other
- Design goals
 - Fewer compressor stages to reduce the overall axial span
 - Larger hub diameters that will meet bearing span to diameter goals set by rotordynamics
 - Pushing the rotordynamic limits by balancing stage count, axial span, and key diameters to meet the overall design goals set by the cycle

Rotor Layout

The 6th International Supercritical CO₂ Power Cycles Symposium March 27 - 29, 2018 Pittsburgh, Pennsylvania

Main rotor Components

- 1. Coupling
- 2. Journal bearing
- 3. Dry gas seal
- 4. Balance Piston
- 5. Main / Bypass Compressor
- 6. Bypass / Main Compressor
- 7. Thrust collar and thrust bearings

- API 617
- ASME Section VIII Division 2

Coupling and Shaft Sizing

$$T = 63,025 \frac{P}{w} = 63,025 \frac{6570}{27000} = 15,336 \text{ in} - lbs$$

$$\tau = \frac{Tr}{J} = \frac{15336 \, x \, 1.125}{2.52} = 6,857 \, psi$$

$$J = \frac{\pi r^4}{2} = 2.52 \text{ in}^4$$
$$\sigma = \frac{3+v}{8}\rho\omega^2 \left[r^2 + 2R^2 - \frac{1+3v}{3+v}r^2\right]$$

- 3 shaft size limitations
- 1) Coupling size due to speed
- 2) Shaft minimum size due to torque
- 3) Shaft maximum size due to speed

Stator Layout

The 6th International Supercritical CO₂ Power Cycles Symposium March 27 - 29, 2018 Pittsburgh, Pennsylvania

Stator Components

- 1. End Caps / DGS Housing
- 2. Balance Piston Housing / Inlet
- 3. MC / Bypass Diaphragm
- 4. Division Wall
- 5. MC / Bypass Diaphragm
- 6. End Cap / DGS Housing
- 7. Main external casing

Diaphragm Sizing

$$\sigma_{max} = \frac{k_1 P a^2}{h^2}$$

$$w_{max} = \frac{k_2 P a^4}{E h^3}$$

o/b	Simply S	upported	Fixed Support		
a/b	k1	k2	k1	k2	
1.25	0.592	0.184	0.105	0.002	
1.50	0.976	0.414	0.259	0.014	
2.00	1.440	0.664	0.480	0.058	
3.00	1.880 0.824		0.657	0.130	
4.00	2.080	0.830	.830 0.710 0		
5.00	5.00 2.190		0.730	0.175	

Inlet & Exit Sizing

- Meet set design velocities
 - Higher velocities lead to erosion and pressure loss
 - For shorter lengths in volutes and nozzles, velocity limits can be increased
- Lower speeds mean more axial and radial space required
- Compact machinery, look into combining volutes with other components

Axial Length

Diaphragm Axial Space

OD	Material					
in	20 ksi	30 ksi	40 ksi	50 ksi		
10	11.13	9.15	7.98	7.21		
12	14.92 12.27		10.69	9.77		
14	18.54 15.25		13.29	12.27		
16	22.06	6 18.15 15.8		14.72		
18	25.54	21.01	18.36	17.16		
20	29.01 23		21.00	19.63		
22	32.49	26.73	23.67	22.13		
24	35.89	29.53	26.33	24.63		
26	39.06	32.14	28.85	26.99		
28	41.67	41.67 34.29 30.96 28.		28.96		
30	43.15 35.50 32.09 29		29.98			

Inlet and Exit Diameters

Section		Pres	sure	Tempe	erature	Density	Mass	Flow	Max Vel.	Min Dia.
		Мра	psi	С	F	lbm/in^3	kg/s	lbm/s	ft/s	in
Main	Inlet	8.55	1,240	35	95	0.0224	70.3	155.0	80	3.03
	Exit	24.13	3,500	78	172	0.0247	70.3	155.0	80	2.88
Bypass	Inlet	8.69	1,260	88	190	0.0061	34.2	75.4	80	4.04
	Exit	23.99	3,479	194	381	0.0116	34.2	75.4	80	2.94
Main	Inlet	8.55	1,240	35	95	0.0224	70.3	155.0	150	2.21
	Exit	24.13	3,500	78	172	0.0247	70.3	155.0	150	2.11
Bypass	Inlet	8.69	1,260	88	190	0.0061	34.2	75.4	150	2.95
	Exit	23.99	3,479	194	381	0.0116	34.2	75.4	150	2.15

Design Envelope

Actuator Design

Future Work

- 1. Final Analysis
 - a) Finite element analysis on all stator and rotating components
 - Verify that stresses meet design limits
 - Verify that displacements meet design limits
 - See if diaphragm thicknesses can be reduced or need to be increased
 - b) Rotordynamics
 - Verify that there is significant margin to bending modes
 - See if there is extra margin for rotor span
 - c) Aerodynamics
 - Verify if number of stages is adequate for required performance
 - Check all flow path designs
- 2. Detail Design
 - a) Complete design of internal flow paths and ports
 - b) Add seals and bolts
 - c) Design all external housings
 - Thrust bearings
 - Journal bearings
 - Coupling guards
- 3. Testing
 - a) Verify performance of main compressor with variable IGVs
 - b) Verify performance of bypass compressor with variable IGVs

- 1. Lambruschini, F., Liese, E., Zitney, S., and Traverso, A., 2016, "Dynamic Model of a 10 MW Supercritical CO₂ Recompression Brayton Cycle," *ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition*, Seoul, South Korea.
- 2. Del Greco, A. and Tapinassi, L., 2013, "On the Combined Effect on Operating Range of Adjustable IGVs and Variable Speed in Process Multistage Centrifugal Compressors," *ASME Turbo Expo 2013: Turbine Technical Conference and Exposition*, San Antonio, Texas, USA.
- 3. Hexemer, M, 2014, "Supercritical CO₂ Brayton Recompression Cycle Design and Control Features to Support Startup and Operation," *The 4th International Symposium Supercritical CO₂ Power Cycles: Technologies for Transformational Energy Conversion*, Pittsburgh, Pennsylvania, USA.
- 4. Ertas, B., Delgado, A., and Moore, J., 2018, "Dynamic Characterization of an Integral Squeeze Film Bearing Support Damper for a Supercritical CO₂ Expander," *Journal of Engineering for Gas Turbines and Power*.
- 5. American Petroleum Institute, 2005, "API Standard Paragraphs Rotordynamic Tutorial: Lateral Critical Speeds, Unbalance Response, Stability, Train Torsionals, and Rotor Balancing," 684 ed. 2.
- 6. Beardmore, R., 2013, "Loaded Flat Plate," <u>http://www.roymech.co.uk/Useful_Tables/Mechanics/Plates.html</u>.
- 7. Tan, J., Qi, D., and Wang, R., 2010, "The Effect of Radial Inlet on the Performance of Variable Inlet Guide Vanes in Centrifugal Compressor Stage,: *ASME Turbo Expo 2010: Power for Land, Sea, and Air*, Glasgow, UK.
- Sezal, I., Chen, N., Aalburg, C., Gadamsetty, R., Erhard, W., Del Greco, A., Tapinassi, L., and Lang, M., 2016, "Introduction of Circumferentially Non-uniform Variable Guide Vanes in the Inlet Plenum of a Centrifugal Compressor for Minimum Losses and Flow Distortion," *Journal of Turbomachinery*, September 2016, Vol. 138.