March 2018

NET POWER

TRULY CLEAN, CHEAPER ENERGY

MARCH 2018 **8** R I V E R S *Atlas Copco*

March 2018

AGENDA

- NET POWER ALLAM CYCLE INTRODUCTION
- Ø NET POWER 50MW TEST PLANT AND PROCESS DIAGRAM OVERVIEW
- Ø ATLAS COPCO GAS TURBINE DRIVEN INTEGRALLY GEARED SCO2 COMPRESSOR
 - TECHNICAL CHALLENGES OVERVIEW
- Ø NEXT STEPS

March 2018

NET POWER'S ALLAM CYCLE ADVANTAGE

USING THE ALLAM CYCLE TO MEET THE WORLD'S CLIMATE TARGETS WITHOUT PAYING MORE FOR ELECTRICITY.

NETPOWER

Using the Allam Cycle, NET Power

- PRODUCES ELECTRICITY FROM NATURAL GAS
- DEMONSTRATES SUPERIOR TOTAL ECONOMIC ADVANTAGE TO EXISTING NATURAL GAS POWER PLANTS
- CAPTURES OR ELIMINATES SUBSTANTIALLY ALL OF THE CARBON AND NON-CARBON ATMOSPHERIC EMISSIONS WITHOUT ANY ADDITIONAL COST
- **DOES NOT REQUIRE WATER** (AT A SMALL REDUCTION IN EFFICIENCY)
- CAN USE INEXPENSIVE FUELS SUCH AS ACID GAS, SOUR GAS, ASSOCIATED GAS, AND PRODUCED GAS
- PRODUCES VALUABLE GASES, INCLUDING CO2, N2, O2 AND AR

"NET Power does not make natural gas a bridge—or a pier. It makes it a destination." -Senior DOE official

March 2018

ALLAM CYCLE NATURAL GAS PLATFORM

OXY-FUEL, SEMI-CLOSED-LOOP, WITH A CO_2 WORKING FLUID.

55 to 59% (LHV) NET EFFICIENCY (CAN BE ADJUSTED DEPENDING ON NEEDS), WITH CAPTURE OF >97% OF CO_2 .

CO₂ AND WATER ARE THE ONLY EFFLUENTS. ASU ALSO PRODUCES SALEABLE BYPRODUCTS.

A NEAR-TERM SOLUTION THAT UTILIZES MOSTLY EXISTING EQUIPMENT IN A NOVEL WAY.

NETPOWER

Gas Turbine Driven Atlas Copco Compressor Solution

Why integrally geared?

Comparison summary based on same process condition

	Atlas Copco Integrally Geared	Barrel Type (Single Shaft or Inline)	
	Ŧ ŗ ŧ.		
Size (L x W x H) m	2.5 x 3.5 x 3	4 x 3 x 2	
Weight (tons)	12 tons	20 tons	
Polytropic Efficiency %	80%	78%	
Installation Cost Factor* (% of Compressor Cost)	50%	70%	
Annual Compressor Maintenance Cost Factor** (% of Compressor Cost)	0.8%	1%	
No. Of Impellers	4	5 (minimum)	

* Based on Real Estate, Crane Capacity and Time, Labor etc.
** Based on Oil Consumption, Rotor Wear (Performance Degradation) and Replacement

Volte Compressor Stage Stage Compressor Stage Stage

What is different about this project?

- High speed driver
 - Almost twice normal 2-Pole driver speeds
- Compressor Gas Turbine Generator Train
 - Challenging Rotordynamic requirements
 - Extended Start and Stop Sequences
 - Lowest common denominator controls
- High pressure sCO2
 - Rotordynamic cross-coupling
 - Intricate Sealing Systems

March 2018

High Speed Driver Challenges

Pitch Line Velocity Limitations

- Physical limitations of the rate at which the loading and unloading of the tooth contact occurs
- API recommends a maximum of 150m/s, while Atlas Copco has experience for up to 185m/s
- V: Pitch line velocity (m/s)
- *d*: Gear pitch line diameter (m)

$$V(m/s) = \left(\frac{\pi * d * n}{60}\right)$$

- n: Revolutions per minute
- This therefore means depending on rotational speed there is a given maximum diametrical limit.

March 2018

Gas Turbine Driven Atlas Copco Compressor Solution

March 2018

Compressor – Gas Turbine – Generator Train

Challenging Rotordynamic requirements

- In this project the operational speed range of the whole train is from 85% to 100% design speed
- Lateral
 - Enough margin from the natural frequencies (critical speeds) of the rotors, and low speed gearing needs to be designed into the system
 - All operating cases were checked for changes to the rotordynamic response plots
- Torsional
 - When calculating the torsional reactions of the train this also needs to be accounted as the string accelerates under load to the design speed

Example of Rotor 1

March 2018

Compressor – Gas Turbine – Generator Train

Preliminary Critical Speed Map

Lowest common denominator controls

- During execution, the start, stop and operating controls must constantly be discussed.
- Startup of a intricate train requires many holds and acceleration rates to be discussed with all parties.
 - This delicate balance between multiple parameters such as rotordynamic, aerodynamic, process and mechanical limitations is crucial to an effective solution.
- Stop protocols will also need to be organized depending on equipment hierarchies.

March 2018

High pressure sCO2

- Rotordynamic cross coupling must be investigated
 - This is different than many other compressor projects due to the high density found in sCO2
- Seal components require special attention
 - Dry Gas Seals are sensitive to fluid and simulations should be produced to ensure the process remains stable as it moves across the seal face
 - Seal lines can be mounted with either heat tracing or seal gas heaters to ensure proper temperatures (phases) remain as intended.
 - Seal feeds and drains should be sloped to avoid liquid retention
 - Explosive decompression!

March 2018

Conclusion

- Employing a integrally geared compressor in a sCO2 application presents many challenges. The complexity of the application is only increased when operating in a Compressor – Gas Turbine – Generator train.
- Proper planning and experience helps to mitigate the risk and allows for a robust design.
- Like a well designed gear mesh, clearly defined requirements and good inter-team communication helps produce the best outcome during execution.

March 2018

March 2018

IN PLANNING FOR FIRST COMMERCIAL PROJECT

NET POWER IS READY TO ENGAGE IN DETAILED SITE PLANNING WITH POTENTIAL PROJECT PARTNERS.

Completed detailed Pre-FEED in 2017 for a 303 MWe single train system, 120 bar CO_2 capture.

TARGETING ONLINE DATE IN 2021. SEEKING TO ISSUE A NOTICE-TO-PROCEED IN 2018.

NETPOWER

Plant outputs		FOAK Commercial Plant Performance*		
		Thermal Heat Input (MW)	549.1	100%
Electric	tric 303MW	Turbine Shaft Power (MW)	453.0	-18%
Output		Shaft-mounted CO ₂ compressor and	-47.9	-8%
CO ₂ Output	890,000 ton/year40 million scf/day	Gross Electrical Output (MW)	405.1	
		ASU auxiliary load	-65.1	-12%
N ₂ Output	4.2 MM ton/year	BOP parasitics (pumps, cooling tower, etc.)	-37.5	-7%
Ar Output	70,000 ton/year	Net Electrical Output (MW)	302.5	55.1%
ASU O ₂	4,200 ton/day	Net Plant Efficiency (% on LHV)*	55.1%	55.1%
		Net Plant Heat Rate (LHV)*	6,193	6,193
Site Area	13 acres	* Efficiency optimized for US economics. For countries with high gas prices, 58.9% efficiency is achievable at higher capital cost.		

March 2018

NET POWER

+1 (919) 667-1800

WWW.NETPOWER.COM / WWW.8RIVERS.COM

Sustainable Productivity