

Optimizing the Supercritical CO2 Brayton Cycle for Concentrating Solar Power Application

The 6th International Supercritical CO2 Power Cycles Symposium March 27 - 29, 2018, Pittsburgh, Pennsylvania

energy.gov/solar-office

Rajgopal Vijaykumar, Matt Bauer, Mark Lausten, Avi Shultz, U.S. Department of Energy

Talk Objectives

- Rapid Introduction to Concentrated Solar Power (CSP), with Focus on SETO Goals
- sCO₂ techno-economics aligned with cost competitive CSP, with focus on the Following:
 - power block efficiency
 - power block cost
 - primary heater temperature change (ΔT)
 - CSP HTM-to-sCO₂ heat exchanger
 - dry cooling
 - Operation and maintenance (O&M), including consideration of autonomous CSP power cycle operation
- For each Area, Solar Energies Technology Office-Funded sCO₂ Research Quick review
- For each Focus Area, Provide overview of technology development needs for future sCO₂ research aligned with CSP Requirements

energy.gov/solar-office

SOLAR ENERGY TECHNOLOGIES OFFICE U.S. Department Of Energy

Technology Development Pathways for Gen3 CSP

COLLECT	COLLECTOR RECEIVER THERMAL THERMAL THERMAL STORAGE HEAT HEAT HEAT EXCHANGE CYCLE										
SOLID MEDIA	 Thermal Efficiency: Particle Loss Flow Velocity Control and Monitoring 	 Reliability Mechanical and Thermal Efficiency Scalability Insulation 	 Charging and Discharging Particle loss, Efficiency, Scalability 	 Particle Attrition Optimized Performance Character 	 Low Cycle Fatigue Particle Mass Flow Control Ramp Rates & Transients 						
MOLTEN SALT	 Thermal Conductivity Thermal Stability Tube Strength and Durability 	 Pipe Material Compatibility Freeze Recovery Pumps Valves Seals Leak Detect 	 Corrosion Behavior Chemistry Monitoring and control Tank Cost 	 Characterize Material Properties Cost / Supply Chain 	 Material Compatibility w/sall & CO₂ Freeze Protection Thermal Ramp Rates 						
GAS	 High Pressure Fatigue Absorptivity Control and Thermal Loss Management 	 Recirculator Cost & Operating Power Large Pipes High Cost 	 Storage Concept not Determined 	 Low Thermal Conductivity Low Heat Capacity 	 Requires High Area Multiple Heat Exchangers Cascading Temperature 						

energy.gov/solar-office

SOLAR ENERGY TECHNOLOGIES OFFICE U.S. Department Of Energy

SETO sCO₂ Power Cycle Portfolio by Category

CATEGORY	PROJECT TITLE	PRIME		
	Compression System Design and Testing for sCO ₂ CSP Operation	GE		
Turbomochinory	Development of an Integrally-Geared sCO ₂ Compander	SwRI		
Turbomachinery	Development of High Efficiency Expander and 1 MW Test Loop	SwRI		
	Physics-Based Reliability Models for sc-CO ₂ Turbomachinery Components	GE		
Meteriale	Lifetime Model Development for Supercritical CO ₂ CSP Systems	ORNL		
waterials	sCO ₂ Corrosion and Compatibility with Materials	UW-Madison		
Commonante	Development and Testing of a Switched-Bed Regenerator	UW-Madison		
Components	sCO ₂ Power Cycle with Integrated Thermochemical Energy Storage	Echogen Power Systems		
Technoeconomics	Cycle Modeling, Integration with CSP, and Technoeconomics	NREL		
	High Flux Microchannel Direct sCO ₂ Receiver	Oregon State		
	High-Temperature Particle Heat Exchanger for sCO ₂ Power Cycles	SNL		
Primary Heat Exchanger	Robust, Cost-Effective Molten Salt HXer for 800°C Operation with sCO_2	Purdue		
	Solar Receiver with Integrated Thermal Storage for sCO ₂	Brayton Energy		

energy.gov/solar-office

SOLAR ENERGY TECHNOLOGIES OFFICE U.S. Department of Energy

2030 CSP Levelized Cost of Electricity Targets

Pathways to Achieving SunShot 2030 Goals

sCO₂ Cycle Technology Improvement Focus Areas

- Power block efficiency
- Power block cost
- Primary Heater Temperature Change (ΔT)
- CSP Heat Transfer Fluid-to-sCO₂ heat exchanger
- Dry cooling
- Operation and Maintenance (including consideration of autonomous CSP power cycle operation)

Power Block Cost Improvements: Background

*Assumes a gross to net conversion factor of 0.9

Review of Solar Energy Technologies Office sCO₂ Portfolio: Power Block Efficiency

Power Cycle Efficiency Improvements: Background

U.S. Department Of Energy

Power Cycle Efficiency Improvements: Background

Power Cycle Efficiency Improvements: Background

Near Term sCO₂ Component Innovations: Power Cycle Efficiency

- Component Innovations Supporting Cycle Efficiency Improvements Advantageous to CSP
 - Compressor and Turbine Efficiency Improvements that can lead to higher (50%) Efficiency, possibly at Lower Turbine Inlet Temperatures (≤650 °C)
 - Noticing the Levelling of Cycle Efficiency with Increase in UA, and Difficulties in Extending the Effectiveness of Compact Heat Exchangers Beyond 92%, Seek Alternate Recuperators Such as Valved Solid Bed Regenerators; Lower Cost per kWth and Higher Effectiveness, with Accompanying Cycling issues
 - Packaging of Compressors and Turbines into Inline Single Housing Can Reduce Expander Leakage, and Reducing the number of Seals and Bearings
 - Optimization of Expander efficiency by careful consideration of Stages, Sealing and Turbomachinery Design

Long Term sCO₂ Component Innovations: Power Cycle Efficiency

- Component Innovations Supporting Cycle Efficiency Improvements Advantageous to CSP
 - Focusing on Compressors (Close to 30% of Turbine Power Expended in Compression)
 - Liquid Inlet Conditions Possible in Southwest USA when Nigh Temperature Drops Well Below Critical Point; Wet Gas Compression as Topic of Further research
 - Isothermal Compression for sCO₂
 - Further Efficiency Improvements for Large (≥100 Mwe) Machines using Axial Flow Compressors
 - Compressor Inlet Temperature Control Using Heat Rejected from cycle and Heat Pumps

Long Term Compressor Development Needs for CSP

 Move Design Basis for Compressor Inlet Temperature Close to 31 C, with Wide Range Inlet Conditions

Long Term Compressor Development Needs for CSP

Move Design Basis for Compressor Inlet Pressure Close to 73.8 Bars

NERGY

TECHNOLOGIES OFFICE

U.S. Department Of Energy

Wet Gas Compression Can Improve Cycle Efficiency by Several Points¹

M Poerner, G Beck, G Musgrove, C Nolen. UNDERSTANDING WET GAS COMPRESSION IN A SUPERCRITICAL CARBON DIOXIDE CYCLE. The 5th International Symposium - Supercritical CO2 Power Cycles, March 28-31, 2016, San Antonio, Texas, 2016

Low TRL Compressor Technologies

- Move Design Basis for Compressor Inlet Temperature Close to 31 C/73.8 Bars
 - Liquid Volume Fraction and Liquid Mass Fraction Large at sCO₂ Critical Point; No Practical Experience with wet sCO₂; low TRL Technology
 - Design Compressors that Can Handle >20% LVF and LMF
 - Handle Interactions between Liquid Droplets and IGVs and Other Means of Range Extension

Low TRL Compressor Technologies

Quasi-Isothermal Compression; no Design Experience in sCO₂; IsoCompression Brayton Cycles
 Can Increase Power Cycle Efficiency¹
 GT2017-63322, "A STUDY OF S-CO2 POWER CYCLE FOR CSP APPLICATIONS USING AN ISOTHERMAL COMPRESSOR"

Power Block Cost Improvements: Background

Primary heater ΔT

Background

- Thermal Energy System Integral to Molten Salt CSP Units
- Large Diameter Tanks with Targeted and Actual cost of 15 \$/kWth and 27 \$/kWth
- Tank Size and Cost Increases Due to a Combination of Lower ΔT and More Modest Properties, when Chlorides Substituted for Nitrates

Salt	Average Density	Average specific Heat	Thermal Energy Storage	ΔΤ	Volume of TES	Volume of Tank	Height of Salt Tank	Diameter of Salt Tank
	kg/m ³	kJ/kg.K	MWh	°C	m ³	m ³	m	m
Nitrate	1750	1.53	3,000	270	14,341	15,000	20	31
Ternary Chloride	1900	1.14	3,000	180	27,583	29,000	20	43

Cost and LCOE Changes Arising from Moving to High temperature Salt/sCO2 Cycle

energy.gov/solar-office

SOLAR ENERGY TECHNOLOGIES OFFICE U.S. Department of Energy 222

Power Cycle Modification for a Broader DT Across the Primary Heater

A Partial Cooling Cycle to Accommodate a Broader **DT** Across the TES

Near Term sCO₂ Power Cycle Needs for CSP

 Higher Heater ΔT at a given turbine inlet temperature for Partial Cooling Cycle compared with RCBC; ΔT ~270 C Matches with TES Requirements of CSP (Ref. Kulhanek)

HTF-to-sCO₂ Heat Exchanger

- SETO-Funded Research Focused on:
 - Molten Salt-sCO2 Heat Exchanger
 - Novel Cermet to withstand high temperature and corrosion from both, molten salt and sCO₂
 - Manufacture microchannel heat exchanger using cermet; has not been tested in flowing molten salt
 - Solid Particle-sCO2 Heat Exchanger
 - New parallel plate (embedded channels) moving bed heat exchanger
 - To be tested in falling particles/sCO₂
 - HTF-to-SCO2 heat exchanger is a Critical Component to Make the Transition to sCO₂ Cycle Work
 - Need Careful Consideration of System Design for cold startup, hot startup and shutdown

PreCooler Needs for CSP: Air Cooled Heat Exchangers

- Dry Cooling for Precoolers
 - Seinecki Group at ANL Investigated Large Air Cooled Cross Flow Finned Tube heat Exchangers
 - Cost Estimate Below 150 \$/kWth; airside ΔP of 0.2 kPa; 5 MW Air Cooler Power for Removing 132 MWth
 - PCHE cost was found to be Excessive
 - Sandia/VPE design of Parallel Plate Embedded Channel Air cooled Heat Exchanger in Progress
- Use of Waste Heat from sCO₂ Cycle
 - Waste Heat from 100-32 °C Available, and More than 50% of the Input Heat
 - Innovations Such as Using the Waste Heat for Compressor Inlet Chilling Using Heat Pumps Possible, Particularly when Air Temperature is Low
 - Availability of Waste Heat at such a Broad Range Unique to SCO2 and awaits the Use of Novel Cycles for Recovery

Operations and Maintenance Innovations Needed

- CSP Plant Operators in Remote, Desert Locations; do not have Personnel to Operate both, a CSP Unit and a Novel Power Cycle
- A Forgiving Power Cycle Required
- Autonomous Operation and Minimum Operator Action Required to Support a Plant O&M Cost Goals (Fixed \$10/kW-year and Variable \$1/MWh)

Summary and Conclusions

- CSP-Specific Needs for the sCO₂ Cycle were Identified
- Six Specific Areas of Action and Improvement were Identified
- High Turbine Inlet Temperature for 50% sCO2 Cycle Efficiency Leads to High Heat Transfer Fluid Outlet Temperatures and Translates to High TES Storage Cost and High Costs for Piping
- Not Readily Clear that LCOE Goals can Coexist with 700 C Turbine Inlet Temperature Goals
- Might be More Prudent to seek Efficiency Improvements and Cost Improvements at Even Lower Turbine Inlet Temperatures
- Seek to Re-Align Power Cycle cost and efficiency Goals with new SETO LCOE Cost Targets

