sCO₂ Power Cycles with Integrated Thermochemical Energy Storage Using an MgO-Based sCO₂ Sorbent in Direct Contact with Working Fluid for Grid Energy Storage Applications

Andy Muto

Kevin McCabe

Daniel Real

Energy and Environment Division, Southern Research, Durham, North Carolina 27712

Presentation Outline

- Introduction to SunShot program and Southern Research
- Thermochemical energy storage fundamentals and system design
- Heat exchange reactor design
- Quasi steady state and Transient modeling
- Technoeconomic analysis
- CO₂ sorbent material engineering
- Summary and technical challenges

SunShot CSP Performance and Cost Targets

- Non-profit, established in 1941
- Headquarters in Birmingham Alabama
- 450 Scientists, Engineers and Technicians
- Four operating divisions

DRUG DISCOVERY

DRUG DEVELOPMENT

Energy Storage Projects at Southern Research

SunShot thermochemical energy storage projects

CaO-based CO₂ sorbent

 ELEMENTS (2 yrs): "Regenerative Carbonate-Based Thermochemical Energy Storage System for Concentrating Solar Power", DE-EE0006535
APOLLO (3 yrs): "Demonstration of High-Temperature Calcium-Based Thermochemical Energy Storage System for use with Concentrating Solar Power Facilities", DE-EE0007116

MgO-based CO₂ sorbent

3) EERE, Combined water gas shift/CO₂ capture process for integrated gasification combined cycle systems, **DE-FE0026388**

4) SunShot Technology to Market (2 yrs): "sCO₂ power cycle with integrated thermochemical energy storage using an MgO-based sCO₂ sorbent in direct contact with working fluid", DE-EE0008126

Types of Thermal Energy Storage

Sensible Heat

• Energy stored in vibrational modes of molecules (molten salts, sand, etc.)

Latent Heat

• Energy stored in media as it changes phase from solid to liquid (molten salts, Al-Si alloy)

Thermochemical Energy

Too Colo

Decomposing gases (Hydrocarbons, Ammonia) **Carbonates** Metal hydrides Hydroxides Ammoniates

Hydrates amuto@southernresearch.org

Thermochemical Energy Storage Operation and Components

Heat Exchange Reactor Conceptual Design

- 10 hrs of storage, 2000 MWh_{th}
- T=585-675 degC, P= 70-300 atm
- All major TCES components are contained in a underground. The surrounding bedrock is used as a cost-effective means of pressure containment.
- Possibly constructed using mineshaft drilling technology: 16 m diameter, 114 m deep.
- □ Sorbent is loaded into parallel packed beds, with a fluid path length of 5 m and a pellet size of at least 200-650 µm.
- Existing underground storage: natural hasbeen gas storage demonstrated at similar volumes capable of >500 atm.[1,2]

8

[1] Lavine, A. S., Lovegrove, K. M., Jordan, J., Anleu, G. B., Chen, C., Aryafar, H., and Sepulveda, A., 2016, "Thermochemical Energy Storage with Ammonia: Aming for the Sunshot Cost Target." SOLARPACES 2015 amuto@southernresearch.org RESEARCH [2] Glamheden, "Excavation of a cavern for high-pressure storage of natural gas", Tunneling& Underground Space Tech., 2006.

MgO-based TCES offers potentially the fewest components of any TCES for CSP

Reaction Thermodynamics

```
MgO + CO<sub>2</sub> <-> MgCO<sub>3</sub> + 106 kJ
```


Integrated sCO₂ Process Flow Diagram

Features:

- "reheat" cycle is utilized to accept thermal energy under a smaller temperature range: 50°C as opposed to 200°C
- Ability to maintain near-constant power production during transient on-sun conditions with a single reactor

New major components:

- 1) heat exchange reactor
- 2) sCO₂ storage vessel
- 3) sensible heat storage system for the reactive CO_2 .
- 4) circulator

Additional minor components include cyclone separators or filters (not pictured) to eliminate the transport of sorbent fines

Round-trip Exergy Efficiency

- Discharge (carbonation) pressure is held constant 300 atm (675°C).
- □ Charging (decarbonation) pressure swept from 73 atm to 300 atm
- Chemical heat pump operation is possible but there is an efficiency penalty

Transient OD Simulation

Simulation inputs

- P=300 atm (no losses)
- Mass flowrate=constant (normalized)
- T_{in} is time varying on 12-hr half-cycle
- System intentionally driven to an "over charged" state

Model results

- T_{sorbent} remains at a stable value until system is overcharged, after which both T_{sorbent} and T_{CO2} approach T_{in}
- Basic operation of prototype model is validated

Future work

- Extend to 1D
- Use measured sorbent properties

Technoeconomic Analysis

Major cost drivers:

1) energy density of the MgO-based sorbent (\$500/ton_{sorbent} assumed)

2) Underground excavation (\$400/m³ assumed)

Total estimated cost basis: 7-9 \$/kWh_{th}

Sorbent Durability Tests in TGA

CaO-based stabilized CO₂ synthetic sorbent 38% wt gain over 100 cycles at 750°C

Summary

- SR has engineered high performance CaO- and MgO-based CO₂ sorbents and thermal energy systems. Similar methods and approaches will be applied to development of the high pressure MgO-based TCES system.
- Identified a viable path to meet or exceed **SunShot performance targets**
 - Exergy efficiency = 96 %
 - Capital cost \leq \$10/kWh_{th} for a commercial plant
 - Power cycle efficiency $\geq 50\%$

Technical Challenges

- Sorbent performance and total life-cycle costs
- Low cost, high pressure, underground reactor construction
- Integration and controls of the receiver + thermal storage + power cycle

17

Solving The World's Hardest Problems

Acknowledgements

ECHOGEN power systems

Glamheden, "Excavation of a cavern for high-pressure storage of natural gas", Tunneling& Underground Space Tech., 2006.

amuto@southernresearch.org

