

Challenges in using fuel-fired heaters for sCO₂ closed Brayton Cycle

M. Mounir MECHERI

M. Huiqi WANG

6th International Supercritical CO₂ Power Cycle Symposium - Tuesday, March 27, 2018 - Pittsburgh USA

This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 764690.

EDF IN BRIEF

OUR AIM:

Be the leading electricity company and global leader for lowcarbon energy production.

WORLD'S No. 1 ELECTRICITY COMPANY

Particularly well established in Europe, especially France, the United Kingdom, Italy and Belgium, the Group's energy production, marked by the rise in renewable energy, relies on a diversified low-carbon energy mix based on nuclear power.

LEADER IN LOW-CARBON PRODUCTION

- No. 1 producer of nuclear electricity in the world
- No. 1 producer of renewables in Europe
- No. 3 European operator of energy services

EDF COVERS ALL ELECTRICITY ACTIVITIES

Generation Transmission and distribution Supply Energy services

R&D's AIMS

4 STRATEGIC PRIORITIES

DEVELOP & TEST new energy services for customers

PREPARE the electrical systems and networks of the future

CONSOLIDATE AND DEVELOP

competitive and zero-carbon production mixes

SUPPORT the Group's international growth by developing research partnerships

EDF R&D activies on supercritical sCO₂

The sCO_2 cycle is an opportunity to:

- Improve power plant efficiency
- Reduce the fossil plant impact
- Enhance renewable heat sources

Main goals about sCO₂ cycles are to:

- Scale-up the sCO₂ Brayton cycle maturity level
- Prove the sustainability of this technology
- Optimize processes at any load

Outline

- 1. Context
- 2. Adaptation of sCO₂ Brayton cycle to current coal-fired heater constraints
- 3. Methodology and results
- 4. Conclusion and Perspectives

The supercritical CO₂ Brayton cycle

Advantages

Compactness

High performance at high temperature

No water consumption (if air cooled)

→ □ Simplified layout

Expected cost reduction

Expected to fit many heat sources

Context

Expected to fit several heat sink technologies

Cycle characteristics

✓ Highly regenerative cycle (heat available at the turbine outlet)

Source : Cengel & Boles, 2015

✓ Very sensitive to pressure drops, heat sink temperature

Methodology & Results

- Many publications on **nuclear applications** (non-exhaustive list):
 - Vaclav Dostal,
 A supercritical carbon dioxide cycle for next generation nuclear reactors,
 The MIT Center for Advanced Nuclear Energy Systems 2004 <u>http://web.mit.edu/22.33/www/dostal.pdf</u>
 - ✓ Yoonhan Ahn, Seong Jun Bae, Minseok Kim, Seong Kuk Cho, Seungjoon Baik, Jeong Ik Lee, Jae Eun Cha, Review of supercritical CO₂ power cycle technology and current status of research and development, Nuclear Engineering and Technology, Volume 47, Issue 6, 2015, Pages 647-661, ISSN 1738-5733, <u>http://dx.doi.org/10.1016/j.net.2015.06.009</u>

and many many others...

✓ ...

Context

- Prototypes/demo on several other applications:
 - ✓ Concentrated Solar: Sunshot, STEP
 - ✓ Direct fossil fuel cycles (Allam Cycle): NetPower
 - ✓ Waste Heat Recovery: ECHOGEN

Methodology & Results

Literature review: indirect coal-fired application?

(non-exhaustive list)

 Conceptual study of a high efficiency coal fired power plant with CO₂ capture using a supercritical CO₂ Brayton cycle, Le Moullec

Supercritical CO₂ Brayton cycles for coal-fired power plants, Mecheri & Le Moullec

2015

2017

2018

Context

2013

 Thermodynamic and economic investigation of coal-fired power plant combined with various supercritical CO₂ Brayton power cycle, Park et al.

- A supercritical CO₂ Brayton cycle with a bleeding anabranch used in coal-fired power plants, Bai et al.
 - ✓ 300 MW Boiler Design Study for Coal-fired Supercritical CO₂ Brayton Cycle, Bai et al.

→ Late interest for coal-fired power plant application ?

Outline

- 1. Context
- 2. Adaptation of sCO₂ Brayton cycle to current coal-fired heater constraints
- 3. Methodology and results
- 4. Conclusion and Perspectives

10

- Heat available:
 - Combustion chamber
 - Flue gases \checkmark
- Boiler performances \rightarrow depends on the heat recovered
- Limitations:
 - Combustion chamber \rightarrow working fluid must protect material from very high temperatures \checkmark
 - Flue gases \rightarrow flue gas temperature at the stack > condensation temperature ~120°C (~248°F) \checkmark
- Specificities of the "water steam Rankine cycle" (vs CO₂ Brayton cycle)
 - Phase change \rightarrow low water temperature at the turbine outlet + latent heat (vaporization/condensation) \checkmark

Methodology & Results

Low water temperature at the boiler inlet \rightarrow use of low temperature heat of the boiler \checkmark

Note: approximate values

- ✓ High cycle performance
- ✓ Low enthalpy rise in the "boiler"
- Optimized cycle is not able to recover "low temperature heat" of the heat source

Adaptation to coal heater

Methodology & Results

Main issues (using CO₂ instead of water)

Context

Adaptation to coal heater

Methodology & Results

Foreseen solutions to keep high heater performance without impacting the "main" sCO₂ Brayton cycle

Sedf

- Combination of an "optimized sCO₂ Brayton cycle" (denoted "reference cycle") with:
 - ✓ a sCO₂ bottom cycle (cascaded cycles) [Thimsen and Weitzel, 2016]
 - ✓ an Organic Rankine Cycle (ORC)
 - ✓ a very high temperature air-preheating process
 - ✓ low Temperature Recuperator (LTR Bypass) sCO₂ Brayton cycle configuration
 - ✓ high Temperature Recuperator (HTR Bypass) sCO₂ Brayton cycle configuration

Outline

- 1. Context
- 2. Adaptation of sCO₂ Brayton cycle to current coal-fired heater constraints
- 3. Methodology and results
- 4. Conclusion and Perspectives

Sedf

1. Inlet data and assumptions

Parameter	Value	Unit
Coal gross Low Heating Value (LHV)	20.15	MJ/kg
Coal consumption	102	kg/s
Combustion heat	2055	MW _{th}
Radiative losses	0.2	%
Ignition losses	1	%
Useful combustion heat	2031	MW _{th}
Heater efficiency	98.8	%
Furnace Wall Heater (FWH) duty: radiative heat	448	MW _{th}
Furnace Wall Heater (FWH) duty: convective heat	80	MW _{th}
SuperHeater (SH) duty	434	MW _{th}
High temperature Reheater (HRH)	237.6	MW _{th}
Low temperature Reheater (LRH)	551	MW _{th}
Economizer (ECO)	241	MW _{th}
Minimum flue gas temperature at the ECO outlet	320	°C
Heater exchanger pinch	20	K

Disclaimer: this study does not deal with sCO₂ coal-heater design purposes: only simplified assumption are made

Table 2: Supercritical Brayton cycle (sCO₂-BC) reference case parameters

Parameter	Value	Unit
Turbine isentropic efficiency (HP and LP)	92	%
HP Turbine inlet temperature	600	°C
HP Turbine inlet pressure	294.9	bar
HP Turbine outlet pressure	175	bar
LP Turbine inlet temperature	620	°C
LP Turbine inlet pressure	173.9	bar
LP Turbine outlet pressure	77.5	bar
Compressors isentropic efficiency	85	%
Main compressor inlet temperature (cooling temperature)	32	°C
Main and recompression compressors inlet pressure	76.5	bar
Main compressor outlet pressure	300	bar
Recompression inlet temperature	88	°C
Recompression compressor outlet pressure	299	bar
High and Low Temperature Recuperators (HRT and LRT) pinch	10	K
Reference case cycle net efficiency	51.36	%

- Process simulator : Aspen Plus v8.6 (aspentech)
- Simplified "heater" construction: heat duty at given temperature level for each "heater heat exchanger"
- Thermodynamic models:
 - ✓ NIST RefProp for modeling CO₂
 - ✓ SRK for hydrocarbons (ORC)
 - ✓ Water steam table for water
- Indicator: net cycle efficiency defined as:

Npower cycle	=	Turbine work – Compressor (or pump) work (MW_{el})
		Recovered heater duty (MW _{th})

Aspentinas
V8.6
www.aspentech.com Ø 2014 Aspen Technology, Inc. AspenTech®, aspenONE™, and the Aspen leaf logo are trademarks or registered trademarks of Aspen Technology, Inc. All rights reserved.

Methodology & Results

Context Adaptation to coal heater Methodology & Results

- Complete and accurate flexibility analysis requires specific dynamic calculations ! Not achieved here
- This study is only given an qualitative assessment of the flexibility of the foreseen solutions regarding 3 criteria:
 - ✓ Start/stop

Context

- ✓ Part-load range (maximal and minimal acceptable load)
- ✓ Time-response

Adaptation to coal heater

• The final results table is qualitatively assessing these 3 criteria within "positive", "neutral" or "negative" impact on the global power plant flexibility compared to the reference cycle

Criteria	_	=	+	
Start/Stop	Not recommended : only if no other option	Usual frequency	Adapted to high frequency	
Part-load range	Narrow range	Usual range	Wide range	
Time response	Slow	Usual	Rapid	

Methodology & Results

4. Results

		Reference (R)	R + Air preheating	R + LTR bypass	R + HTR bypass	R + ORC	R + Cascaded
Performances and costs	Cycle Efficiencies (%)	51.36	51.36	49.88	51.12	51.36 and 35.8	49.9 and 36.6
	Net Production (MW _e)	899	899	994.6	1018.2	899	480.3
	Secondary net Production (MW _e)	-	-	-	-	86	377
	Total net production (MW _e)	899	899 (=)	994.6 (+95.6)	1018.2 (+119.2)	985 (+86)	857.3 (-41.7)
	CAPEX (M€)	789	789 (=)	823 (+34)	851 (+62)	857 (+68)	711 (-78)
	Specific cost (\$/kW _e)	878	878 (=)	827 (-51)	835.5 (-42.5)	870 (-8)	829.4 (-48.6)
Fired-heater	CO ₂ temperature at the FWH inlet (°C)	477	477 (=)	488 (+11)	497 (+20)	477 (=)	415 (-62)
	Recovered heat (%)	87.9 %	100 %	100 %	100%	100 %	100 %
	Ratio (%) : Power / Recovered heat	43.74	43.74 (=)	48.39 (+4.7)	49.54 (+5.8)	47.92 (+4.2)	41.71 (-2)
Flexibility	Start/stop		=	=	=	=	-
	Load range		=	+	+	+	+
	Time-response		=	=	=	+	+

Context Adaptation to coal heater

Methodology & Results

Outline

- 1. Context
- 2. Adaptation of sCO₂ Brayton cycle to current coal-fired heater constraints
- 3. Methodology and results
- 4. Conclusion and Perspectives

Many **boiler design** challenges to heat CO₂ are not taken into account here (pressure drops management, furnace cooling, material choice, high mass flow rate, structural support...) see [Thimsen and Weitzel, 2016]

ŧ

Simplified cost model: work in progress to **improve these correlations** (to go from "flux based" correlations to "characteristic parameter design" correlations *(e.g. : for heat exchangers: "UA" instant of "heat duty")...*

Flexibility of the sCO_2 – Brayton cycle: necessitate accurate dynamic models and simulations. One of the objectives of the sCO_2 Flex project

sCQ,flex ***

Context

> Adaptation to coal heater

Methodology & Results

Thank you for your attention

Contacts

M. Mounir MECHERI <u>mounir.mecheri@edf.fr</u> M. Huiqi WANG <u>huiqi.wang@edf.fr</u>

Acknowledgement

This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 764690.

References

[1] Yoonhan Ahn, Seong Jun Bae, Minseok Kim, Seong Kuk Cho, Seungjoon Baik, Jeong Ik Lee, Jae Eun Cha, Review of supercritical CO₂ power cycle technology and current status of research and development, Nuclear Engineering and Technology, Volume 47, Issue 6, 2015, Pages 647-661, ISSN 1738-5733, <u>http://dx.doi.org/10.1016/j.net.2015.06.009</u>

[2] Yunus A. Çengel and Michael A. Boles, Thermodynamics: An Engineering Approach, 8th edition, McGraw-Hill Education, 2015, ISBN: 9814595292, 9789814595292

[3] Gary E. Rochau, Jim J. Pasch, Glenn Cannon, Matt Carlson*, Darryn Fleming, Alan Kruizenga, Rob Sharpe, Mollye Wilson, Supercritical CO₂ Brayton Cycles, NP-NE Workshop #2– August 4, 2014, <u>https://www.osti.gov/scitech/servlets/purl/1221819</u>

[4] David Thimsen and Paul Weitzel, Challenges in Designing Fuel-Fired sCO₂ Heaters for Closed sCO₂ Brayton Cycle Power Plants, 5th International Supercritical CO₂ Power Cycles Symposium March 29 - 31, 2016, San Antonio, Texas, http://www.sco2symposium.com/www2/sco2/papers2016/OxyFuel/001paper.pdf

[5] Hayato Hagi, Thibaut Neveux, Yann Le Moullec, Efficiency evaluation procedure of coal-fired power plants with CO₂ capture, cogeneration and hybridization, Energy, Volume 91, 2015, Pages 306-323, ISSN 0360-5442, <u>https://doi.org/10.1016/j.energy.2015.08.038</u>

[6] V. Mallikarjuna, N. Jashuva, B. Rama Bhupal Reddy, Improving Boiler Efficiency by Using Air Preheater, International Journal of Advanced Research in Engineering and Applied Sciences, ISSN: 2278-6252, Vol. 3 | No. 2 | February 2014, <u>http://garph.co.uk/IJAREAS/Feb2014/2.pdf</u>

[7] Kumar Rayaprolu, Boilers for Power and Process, CRC Press, 2009, ISBN: 1420075373, 9781420075373, p254

[8] Antonio C. Caputo, Mario Palumbo, Pacifico M. Pelagagge, Federica Scacchia, Economics of biomass energy utilization in combustion and gasification plants: effects of logistic variables, Biomass & Energy, 28, pp 35-51 <u>http://dx.doi.org/10.1016/j.biombioe.2004.04.009</u>

[9] SungHo Park, JoonYoung Kim, MunKyu Yoon, DongRyul Rhim, ChoongSub Yeom, Thermodynamic and economic investigation of coal-fired power plant combined with various supercritical CO₂ Brayton power cycle, Applied Thermal Engineering 130, pp 611-623, https://doi.org/10.1016/j.applthermaleng.2017.10.145

[10] Ravinder Kumar, Avdhesh Kr. Sharma, P. C. Tewari, Cost analysis of a coal-fired power plant using the NPV method, Journal of Industrial Engineering International, 11(4), 495-504. <u>https://doi.org/10.1007/s40092-015-0116-8</u>

Simplified diagrams of tested configurations

