### sCO<sub>2</sub> Research & Development at NETL



Nathan Weiland, <u>Peter Strakey</u>, Omer Dogan, Jim Black, Eric Liese, and Walter Shelton – NETL, Research and Innovation Center

6<sup>th</sup> International Supercritical CO<sub>2</sub> Power Cycles Symposium, March 27-29, 2018, Pittsburgh, PA



# **NETL's Vision for sCO<sub>2</sub> Power Generation**

- Higher efficiency (up to 4 pts above AUSC steam).
- Reduced footprint.
- Potential for dry cooling.
- Enabling technology for clean coal.
- CO2 sequestration (especially for direct cycle).
- Scalability (5 to 500 MW).
- Flexibility (load following, quick start/shutdown)?





NATIONAL

### NETL Research & Innovation Center (RIC)



*Goal* – Develop technology toward achieving the program goal of increased efficiency using sCO<sub>2</sub>-based power cycles. *Approach* – Perform R&D on turbine blade cooling, oxy-combustion, and materials, along with systems studies.

#### <u>Aerothermal/Heat Transfer</u>

*PI: Jim Black* Cool turbine blades to allow higher turbine inlet temperatures.



#### **Oxy-combustion**

*PI: Peter Strakey* Improve efficiency using higher temperature direct-fired cycle with oxy-combustion.



Proposed Oxy-Fuel Combustor

#### <u>Materials</u>

*PI: Omer Dogan* Evaluate material corrosion, erosion, mechanical property degradation in sCO<sub>2</sub>. Identify materials compatible in sCO<sub>2</sub>.



#### Systems Analyses

NATIONAL

*Pls: Weiland, Shelton, Liese* Steady-state and dynamic modeling, techno-economic evaluations of various configurations of sCO<sub>2</sub> power cycle plants (direct- and indirect-fired cycles)



Source: NETL

#### Source: NETL

Source: NETL

3

### Aerothermal and Heat Transfer R&D



Convective Heat Transfer Coefficients

- Wide Re range of interest for sCO<sub>2</sub> power cycle components 1,000 < Re < 500,000
- Thermophysical properties change rapidly near the critical point making accuracy of calculation in this region difficult.
  Author Nu Correlation Range V
- Many correlations proposed in the literature. Difficult to compare unless they are graphed.

ENERGY ENERGY



| Author                         | Nu Correlation                                                                                                                                                                                   | Range Valid                                             |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| Hausen (1959)                  | $Nu = 3.66 + \frac{0.19(RePr D/L_h)^{0.8}}{1 + 0.117(RePr D/L_h)^{0.467}}$                                                                                                                       | <i>Re</i> < 2300                                        |
| Grigull and<br>Tratz (1965)    | $Nu = 4.36 + \frac{0.00668 \left(\frac{d_h}{x}\right) RePr}{1 + 0.04 \left[\left(\frac{d_h}{x}\right) RePr\right]^{\frac{2}{3}}}$                                                                | laminar                                                 |
| Gnielinski<br>(1976)           | $Nu = \frac{\left(\frac{f}{8}\right)(Re - 1000)Pr}{1.07 + 12.7\left(\frac{f}{8}\right)^{\frac{1}{2}}(Pr^{\frac{2}{3}} - 1)}$ $f = (1.82 \cdot \log(Re) - 1.64)^{-2}$                             | $3,000 < Re < 5 \times 10^{6}$<br>$0.5 \le Pr \le 2000$ |
| Adams et al<br>(1997)          | $Nu = \frac{\left(\frac{f}{8}\right)(Re - 1000)Pr}{1.07 + 12.7\left(\frac{f}{8}\right)^{\frac{1}{2}}(Pr^{\frac{2}{3}} - 1)}(1 + 7.6 \times 10^{-5} Re(1 - (d_h/d_o)^2))$ $d_o = 1.164 \text{mm}$ | turbulent                                               |
| Peng and<br>Peterson<br>(1995) | $Nu = 0.072 \left(\frac{D_h}{W_c}\right)^{1.15} [1 - 2.421(Z - 0.5)^2] Re^{0.8} Pr^{1/3}$<br>where<br>$Z = \frac{\min(H, W)}{\max(H, W)}$<br>H- height, W- width                                 | 450 < Re < 4000                                         |

# Aerothermal and Heat Transfer R&D



Heat Exchange & Experimental Testing (HEET) Rig

- Objective: Validate or develop new correlations for calculating convective HT coefficients
- Utilize Wilson Plot measurement technique
- Capabilities:
  - Max Pressure 3,500 psig (24 MPa)
  - Max Temperature 1,000 °F (538 °C)
  - Max Flow Rate 3 lb/s (1.5 kg/s)
  - Max Reynolds Number 500,000
  - Pure  $CO_2$  or mixture with up to 10%  $N_2$





### **Oxy-Combustion R&D**

Analysis of Combustion Fundamentals

- Natural Gas or Syngas with Oxygen and  $CO_2$  dilution (P ~300 bar, TIT ~1500 K).
- Issues
  - Operating Conditions Virtually no validation data, no kinetic models, no experience at 300 bar!
  - Heat Release More likely to resemble a rocket engine than a gas turbine combustor: Combustion dynamics may be an issue.
  - Kinetics Most methane oxidation models based on GRI Mech, which is only validated below 10 atm.

#### • Approach: Utilize CFD as well as simple 0D and 1D models to assess the issues.



NATIONAL

**Reaction Path** 

снзон

147

Analysis at

300 bar

IECHNOLOGY

**LBORATORY** 

Source: NETL

0.00679

0.0477

### sCO<sub>2</sub> Materials R&D

Materials Compatibility

- Effect of sCO<sub>2</sub> cycle environments on mechanical properties
  - Measurement of fatigue crack growth rates after sCO<sub>2</sub> exposures
- Low-temperature corrosion in direct sCO<sub>2</sub> cycles
  - Inexpensive alloys (e.g. P22, P91), corrode with carbonic acid
- High-temperature oxidation in direct sCO<sub>2</sub> power cycles
  - 750 °C exposure testing with H<sub>2</sub>O, O<sub>2</sub>, and SO<sub>2</sub> impurities
- Erosion of components in sCO<sub>2</sub> cycles
  - CFD of pipe bends shows high-shear oscillations that may cause erosion of oxide scale







0.8

/@N[m/chcla]



245°C CO2 rich

phase without

aqueous

condensation

245°C CO2 rich

phase with

aqueous

condensation

## **Techno-Economic Analysis R&D**

Direct sCO<sub>2</sub> power plants

- Modeled two thermally-integrated Shell gasifier/ direct  $sCO_2$  plants with carbon capture
  - Thermal efficiency of 40.6% (HHV) with 99% carbon capture
  - 20% Cost of Electricity improvement over IGCC systems with carbon capture

#### • Ongoing and future direct sCO<sub>2</sub> analyses:

- Change gasifier types and/or syngas cleanup strategies to improve plant efficiency
- Analysis of natural gas-fired direct sCO<sub>2</sub> system, with detailed turbine cooling model and effect of incomplete combustion
- Development of component models and control strategies to facilitate off-design and part load studies
- Improve sCO<sub>2</sub> component cost accuracy



8

JATIONAL



#### **NETL Research and Innovation Center**

sCO<sub>2</sub> Research Team Contacts



Most of this work is being presented at the 6<sup>th</sup> International Supercritical CO<sub>2</sub> Power Cycles Symposium in Pittsburgh, March 2018.

Aerothermal & Heat Transfer:

James.Black@netl.doe.gov 412-386-5458

Oxy-Combustion: Peter.Strakey@netl.doe.gov 304-285-4476

Materials: Omer.Dogan@netl.doe.gov 541-967-5858 System Dynamics: Eric.Liese@netl.doe.gov 304-285-4610

Techno-Economic Analyses: Nathan.Weiland@netl.doe.gov 412-386-4649

Walter.Shelton@netl.doe.gov 304-285-4209

