

sCO2 Symposium WHR Panel

SCO2 Turbomachinery Developments

March 27, 2018

David S. Stapp
CEO/CTO
Peregrine Turbine Technologies, LLC

What is the Right Target Pressure Ratio?

Work Presented at TurboExpo 2017 by Dr. David Sanchez, Univ. of Seville

What is Possible with High Temp Primary Heat Exchanger?

Temperature Capability of Primary Heat Exchangers is Limiting Rather Than That of the Turbine Wheel

Peregrine Turbine 1.0 MW Core

P3 - 6220 psi (42.9 MPa)

T3 - 196°F

PR - 5.5

Ng ~ 118,350 RPM

Design Features

- 2 Stg Radial Compressor
- Radial Inflow Turbine
- Gas Foil Radial Bearings
- Gas Static Thrust Bearing
- Pressure Activated Leaf Seals
- 4 Radial Turbine Inlets
- 2 Radial Compressor Outlets

Pressure Activated Leaf Seals (PALS) For Secondary Flow

The Problem

- Conventional Labyrinth Seals Result in Cross-Coupled Stiffness and Potential Rotordynamic Instability in sCO2.
- High Delta Pressures Result in Large Flows for Conventional Seals and Large Performance Charges to the Cycle.
- Soft Radial Bearings such as Gas Foils Can Result in Large Seal Wear-In Clearances
 Caused by Transiting First Rocking and Translation Modes during Start and Shutdown

The Solution

• Seals that Run Open at Low Speeds and Close Down to Rotor Orbit at Design Speed

Currently at TRL5

Dry Gas Seals (DGS) for Power Turbine Shaft

Currently at TRL8

The Problem

- Large Pressure Delta to Ambient Combined with High Shaft Speeds
- Dense, Low-Viscosity sCO2 Hard to Seal
- Cycle Efficiency and Economics are Sensitive to Flow Leakage at Shafts

The Solution

 DGS or Process Seals are Known for Very Low Leakage. Efforts by Major Manufacturers Crane and Flowserve to Optimize Designs for sCO2 Applications

Peregrine Turbine 1.0 MW Core

- Core Turbomachinery is Removable as a Cartridge
- Casing Stays with Piping Network
- Turbopump will be Tested in Sandia's Brayton Test Loop
- Pressure Ratio Set by B31.1 XXS Pipe Pressure Limits
- CDR Completed with AFRL Chief Turbine Engineer August 2017
- First Build Completed November 2017
- TRL6 to be Achieved Q2 2018 During Tests in the Sandia National Labs Test Loop.

Turbopump Design Partly Funded by AFRL and ONR

DOE Funded Program to Develop Integrally Geared Compressor-Expander for Recompression Brayton Cycle

10 MW_e Cycle Using an IG Compressor-Expander Configuration:

- TIT of 705°C
- 50% efficiency at design point
- wide-range compressor (50-70% range)
- Targets CAPEX and LCOE (900\$/kWe, 6¢/kWe)
- Integrating advanced manufacturing, wide range compression into a challenging pressure-temperature

Technology Readiness Level Commercial Readiness 8 2020 Field Trial 7 **Technology** 6 2019 **Demonstrations** 5 2018 **Technology** 4 **Development** 3 2015 Research to **Prove Feasibility** 2

Basic Research

Conclusions:

- Pressure Ratios Above 5.5 Currently Achievable within B31.1 Piping Limits. System Topology is the Key
- TIT of 750°C Not a Difficult Objective for Turbomachinery
- Seal Designs Still in Need of Further Development/Testing
- Near Combined-Cycle-Level Efficiency Appears to be Achievable in Much Smaller Primary Cycle Systems with HX and Turbocompressor Development
- Determining Factor will be Development of Ceramic or Other High Temperature Primary Heat Exchangers

