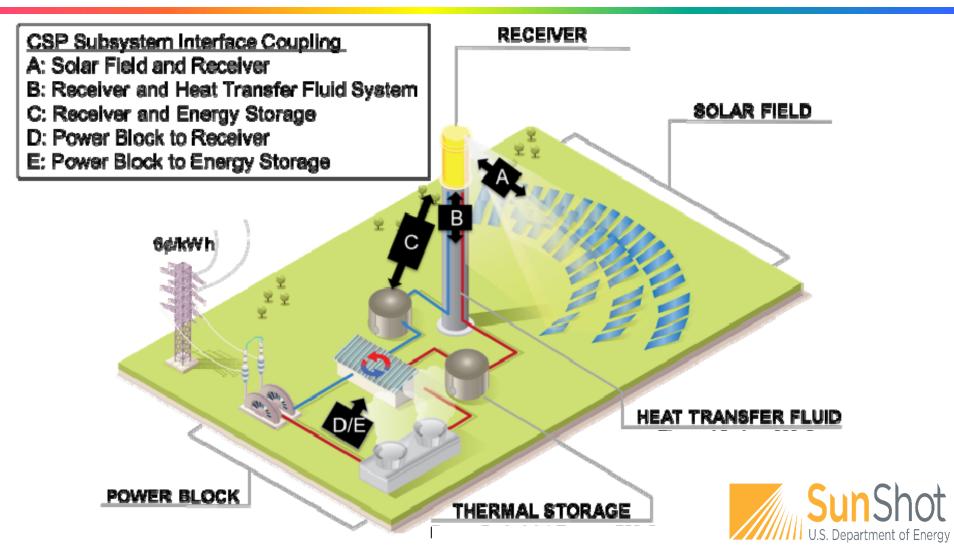
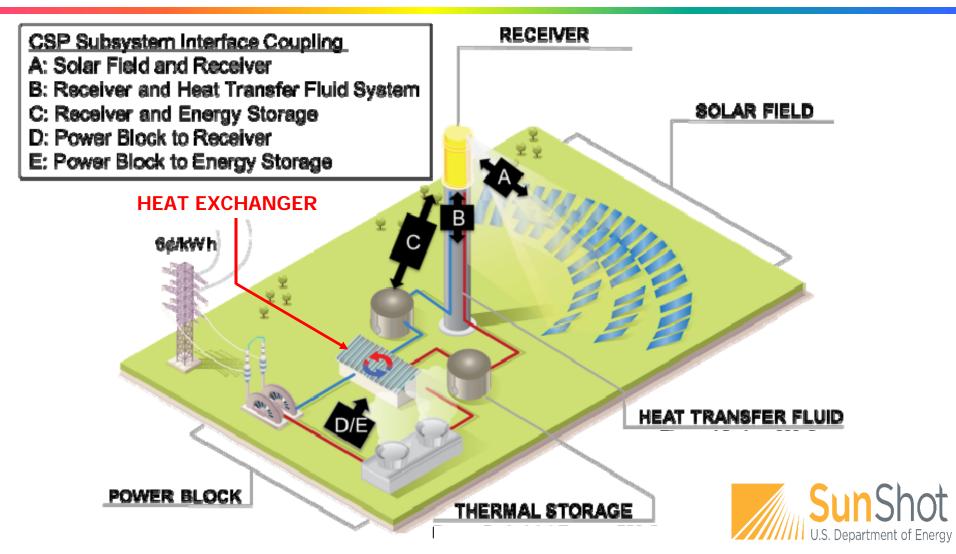
What Universities Can Do To Help Make sCO₂ a Commercial Reality?

Ken H. Sandhage Reilly Professor of Materials Engineering School of Materials Engineering Purdue University W. Lafayatte, IN USA E-mail: sandhage@purdue.edu



Exploration of Robust, High-Temperature Ceramic Composites


Ken H. Sandhage Reilly Professor of Materials Engineering School of Materials Engineering Purdue University W. Lafayatte, IN USA E-mail: sandhage@purdue.edu

Concentrated Solar Power Tower

Concentrated Solar Power Tower

Some Limitations of Fe-, Ni-based Alloys

Modest melting points

 $(T_{Solidus} \leq 1400^{\circ}C \text{ for IN617/Ni-Cr-Co-Mo}^1, IN740H/Ni-Cr-Co}^2, 304SS/Fe-Cr-Ni-Mn}^3, 316SS/Fe-Cr-Ni-Mo-Mn}^4)$

Significant strength decline at >650°C

(10,000 h rupture strength decreases from 345 MPa at 600°C to 116 MPa at 760°C to 69 MPa at 815°C for IN617¹)

- 1. http://www.specialmetals.com/assets/smc/documents/alloys/inconel/inconel-alloy-617.pdf.
- 2. http://www.specialmetals.com/assets/smc/documents/alloys/inconel/inconel-alloy-740-h.pdf
- 3. http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=mq304a
- 4. http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=mq316a
- 5. Y. S. Touloukian, R. K. Kirby, R. E. Taylor, P. D. Desai, *Thermal Expansion: Metallic Elements and Alloys, Thermophysical Properties of Matter.* Vol. 12. Plenum Press, 1975.

Some Limitations of Fe-, Ni-based Alloys

Modest melting points

 $(T_{Solidus} \leq 1400^{\circ}C \text{ for IN617/Ni-Cr-Co-Mo}^1, IN740H/Ni-Cr-Co}^2, 304SS/Fe-Cr-Ni-Mn}^3, 316SS/Fe-Cr-Ni-Mo-Mn}^4)$

Significant strength decline at >650°C

(10,000 h rupture strength decreases from 345 MPa at 600°C to 116 MPa at 760°C to 69 MPa at 815°C for IN617¹)

Modest thermal conductivities at 800°C

(at 800°C, κ = 25.6 W/m-K for IN617¹, 22.1 W/m-K for IN740H², 26.3 for 304SS⁵, and 23.4 W/m-K for 316SS⁵)

- 1. http://www.specialmetals.com/assets/smc/documents/alloys/inconel/inconel-alloy-617.pdf.
- 2. http://www.specialmetals.com/assets/smc/documents/alloys/inconel/inconel-alloy-740-h.pdf
- 3. http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=mq304a
- 4. http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=mq316a
- 5. Y. S. Touloukian, R. K. Kirby, R. E. Taylor, P. D. Desai, *Thermal Expansion: Metallic Elements and Alloys, Thermophysical Properties of Matter.* Vol. 12. Plenum Press, 1975.

Some Limitations of Fe-, Ni-based Alloys

Modest melting points

 $(T_{Solidus} \leq 1400^{\circ}C \text{ for IN617/Ni-Cr-Co-Mo}^1, IN740H/Ni-Cr-Co}^2, 304SS/Fe-Cr-Ni-Mn}^3, 316SS/Fe-Cr-Ni-Mo-Mn}^4)$

Significant strength decline at >650°C

(10,000 h rupture strength decreases from 345 MPa at 600°C to 116 MPa at 760°C to 69 MPa at 815°C for IN617¹)

Modest thermal conductivities at 800°C

(at 800°C, κ = 25.6 W/m-K for IN617¹, 22.1 W/m-K for IN740H², 26.3 for 304SS⁵, and 23.4 W/m-K for 316SS⁵)

- Photochemical etching of channel patterns can be a relatively slow and expensive process for mass production of standardized patterns (compared to fast forming processes, such as stamping⁶⁻⁸)
- 6. D. M. Allen, "Photochemical Machining: From "Manufacturing's Best Kept Secret" to a \$6 Billion per Annum, Rapid Manufacturing Process," *CIRP Ann.*, 53 (2) 559-572 (2004).
- 7. D. M. Allen, H. J. A. Almond, F. Gaben, S. Impey, "The Causes and Prevention of Smut on Etched AISI 300 Stainless Steels," *CIRP Ann.*, 54 (1) 187-190 (2005).
- 8. P. N. Rao, D. Kunzru, "Fabrication of Microchannels on Stainless Steel by Wet Chemical Etching," *J. Micromech. Microeng.*, 17, N99-N106 (2007).

Some Limitations of Monolithic Ceramics

Modest fracture toughness

 $(K_{1C} = 3 \text{ MPa} \cdot \text{m}^{1/2} \text{ for } \ge 95\% \text{ dense, } 7 \ \mu\text{m} \text{ (ave.) } Al_6 Si_2 O_{13} \text{ (mullite)}^1; 3-5 \text{ MPa} \cdot \text{m}^{1/2} \text{ for} \ge 90\% \text{ dense, } 4-8 \ \mu\text{m} \text{ Al}_2 O_3^2; 3.9-4.6 \text{ MPa} \cdot \text{m}^{1/2} \text{ for } \ge 94\% \text{ dense, } 4-10 \ \mu\text{m} \text{ Hexoloy SiC}^3)$

- 1. Superior Technical Ceramics, https://www.ceramics.net/sites/default/files/files/Mullite%20Material%20Property%20Chart %201page.pdf.
- 2. CoorsTek, https://www.coorstek.com/media/1715/advanced-alumina-brochure.pdf
- 3. Saint-Gobain Ceramic Materials, https://www.refractories.saint-gobain.com/sites/ imdf.hpr.com/files/hexoloy-norbide-noralide-alnimax-products-en-1027-bro.pdf

Some Limitations of Monolithic Ceramics

Modest fracture toughness

 $(K_{1C} = 3 \text{ MPa} \cdot \text{m}^{1/2} \text{ for } \ge 95\% \text{ dense}, 7 \ \mu\text{m} \text{ (ave.) Al}_6\text{Si}_2\text{O}_{13} \text{ (mullite)}^1; 3-5 \text{ MPa} \cdot \text{m}^{1/2} \text{ for} \ge 90\% \text{ dense}, 4-8 \ \mu\text{m} \text{ Al}_2\text{O}_3^2; 3.9-4.6 \text{ MPa} \cdot \text{m}^{1/2} \text{ for} \ge 94\% \text{ dense}, 4-10 \ \mu\text{m} \text{ Hexoloy SiC}^3)$

Low-to-modest thermal conductivity at 800°C

($\kappa \leq 4$ W/m-K for $\geq 89\%$ dense Al₆Si₂O₁₃^{4,5}, ≤ 7 W/m-K for $\geq 92\%$ dense polycrystalline Al₂O₃⁵, ≤ 45 W/m-K for dense sintered polycrystalline SiC⁶)

Poor-to-fair thermal shock resistance (Al₂O₃ and Al₆Si₂O₁₃ are worse than SiC^{7,8})

- 4. B. Hildmann, H. Schneider, "Thermal Conductivity of 2/1-Mullite Single Crystals," J. Am. Ceram. Soc., 88 (10) 2879-2882 (2005).
- 5. W. D. Kingery, J. Francl, R. L. Coble, T. Vasilos, "Thermal Conductivity: X, Data for Several Pure Oxide Materials Corrected to Zero Porosity," *J. Am. Ceram. Soc.*, 37 (2) 107-110 (1954).
- 6. L. Sigl, "Thermal Conductivity of Liquid Phase Sintered Silicon Carbide," J. Euro. Ceram. Soc., 23, 1115-1122 (2003).
- 7. H. Wang, R. N. Singh, "Thermal Shock Behavior of Ceramics and Ceramic Composites," Int. Mater. Rev., 39 (6) 228-244 (1994).
- 8. W. D. Kingery, "Factors Affecting Thermal Stress Resistance of Ceramic Materials," J. Am. Ceram. Soc., 38 (1) 3-15 (1955).

Some Limitations of Monolithic Ceramics

Modest fracture toughness

 $(K_{1C} = 3 \text{ MPa} \cdot \text{m}^{1/2} \text{ for } \ge 95\% \text{ dense}, 7 \ \mu\text{m} \text{ (ave.) Al}_6\text{Si}_2\text{O}_{13} \text{ (mullite)}^1; 3-5 \text{ MPa} \cdot \text{m}^{1/2} \text{ for} \ge 90\% \text{ dense}, 4-8 \ \mu\text{m} \text{ Al}_2\text{O}_3^2; 3.9-4.6 \text{ MPa} \cdot \text{m}^{1/2} \text{ for} \ge 94\% \text{ dense}, 4-10 \ \mu\text{m} \text{ Hexoloy SiC}^3)$

- Low-to-modest thermal conductivity at 800°C (κ ≤ 4 W/m-K for ≥ 89% dense Al₆Si₂O₁₃^{4,5}, ≤ 7 W/m-K for ≥ 92% dense polycrystalline Al₂O₃⁵, ≤ 45 W/m-K for dense sintered polycrystalline SiC⁶)
- Poor-to-fair thermal shock resistance (Al₂O₃ and Al₆Si₂O₁₃ are worse than SiC^{7,8})
- Fabrication of dense ceramics in complex, tailorable, and precise shapes is non-trivial and can be expensive (high firing temperatures; sintering shrinkage and distortion⁹)
- 4. B. Hildmann, H. Schneider, "Thermal Conductivity of 2/1-Mullite Single Crystals," J. Am. Ceram. Soc., 88 (10) 2879-2882 (2005).
- 5. W. D. Kingery, J. Francl, R. L. Coble, T. Vasilos, "Thermal Conductivity: X, Data for Several Pure Oxide Materials Corrected to Zero Porosity," *J. Am. Ceram. Soc.*, 37 (2) 107-110 (1954).
- 6. L. Sigl, "Thermal Conductivity of Liquid Phase Sintered Silicon Carbide," J. Euro. Ceram. Soc., 23, 1115-1122 (2003).
- 7. H. Wang, R. N. Singh, "Thermal Shock Behavior of Ceramics and Ceramic Composites," Int. Mater. Rev., 39 (6) 228-244 (1994).
- 8. W. D. Kingery, "Factors Affecting Thermal Stress Resistance of Ceramic Materials," J. Am. Ceram. Soc., 38 (1) 3-15 (1955).
- 9. A. Sommers, Q. Wang, X. Han, C. Tjoen, Y, Park, A. Jacobi, "Ceramics and Ceramic Matrix Composites for Heat Exchangers in Advanced Thermal Systems A Review," *Appl. Thermal Eng.*, 30, 1277-1291 (2010).

Ceramic/Metal Composites:

Chemical compatibility

(non-reactive phases, limited mutual solid solubility, high solidus temperature)

Chemical compatibility

(non-reactive phases, limited mutual solid solubility, high solidus temperature)

- Thermal compatibility:
 - internal stresses from thermal expansion mismatch (ave. linear CTEs for RT-1000°C: 16.3x10⁻⁶/°C for IN617/Ni-Cr-Co-Mo, 9.0x10⁻⁶/°C for Al₂O₃; 4.8x10⁻⁶/°C for SiC)

Chemical compatibility

(non-reactive phases, limited mutual solid solubility, high solidus temperature)

- Thermal compatibility:
 - internal stresses from thermal expansion mismatch (ave. linear CTEs for RT-1000°C: 16.3x10⁻⁶/°C for IN617/Ni-Cr-Co-Mo, 9.0x10⁻⁶/°C for Al₂O₃; 4.8x10⁻⁶/°C for SiC)
 - thermal conductivities

Chemical compatibility

(non-reactive phases, limited mutual solid solubility, high solidus temperature)

Thermal compatibility:

- internal stresses from thermal expansion mismatch (ave. linear CTEs for RT-1000°C: 16.3x10⁻⁶/°C for IN617/Ni-Cr-Co-Mo, 9.0x10⁻⁶/°C for Al₂O₃; 4.8x10⁻⁶/°C for SiC)
- thermal conductivities

Mechanical compatibility

(continuity of ceramic phase for high-temperature stiffness and creep resistance; high metallic content for toughness)

Chemical compatibility

(non-reactive phases, limited mutual solid solubility, high solidus temperature)

Thermal compatibility:

- internal stresses from thermal expansion mismatch (ave. linear CTEs for RT-1000°C: 16.3x10⁻⁶/°C for IN617/Ni-Cr-Co-Mo, 9.0x10⁻⁶/°C for Al₂O₃; 4.8x10⁻⁶/°C for SiC)
- thermal conductivities

Mechanical compatibility

(continuity of ceramic phase for high-temperature stiffness and creep resistance; high metallic content for toughness)

Cost-effective processing capable of generating complex, tailorable, and precise shapes

(*liquid metal processing*: poor wetting of the ceramic by the liquid metal, metal melting temperature; *powder processing*: high sintering temperatures, shrinkage and distortion)

 High melting point and chemical compatibility (Tie line between ZrC and W, limited mutual solubility, T_{Solidus} = 2,800°C)

- High melting point and chemical compatibility (Tie line between ZrC and W, limited mutual solubility, T_{Solidus} = 2,800°C)
- Thermal expansion match

(W: 4.5x10⁻⁶/°C - 9.2x10⁻⁶/°C from RT to 2700°C, ZrC: 4.0x10⁻⁶/°C - 10.2x10⁻⁶/°C from RT to 2700°C)

High thermal conductivity

(κ = 66.0 W/m-K at 800°C vs. 22.1 W/m-K for IN740H, 24.4 W/m-K for H230, 23.4 W/m-K for 316SS, 26.3 W/m-K for 304SS, \leq 45 W/m-K for SiC)

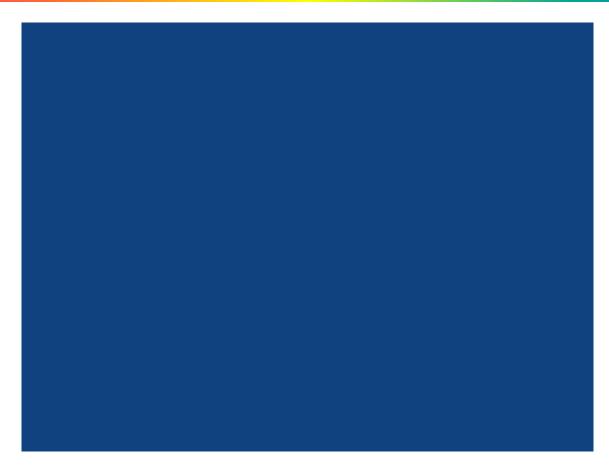
- High melting point and chemical compatibility (Tie line between ZrC and W, limited mutual solubility, T_{Solidus} = 2,800°C)
- Thermal expansion match (W: 4.5x10⁻⁶/°C - 9.2x10⁻⁶/°C from RT to 2700°C, ZrC: 4.0x10⁻⁶/°C - 10.2x10⁻⁶/°C from RT to 2700°C)
- High thermal conductivity (κ = 66.0 W/m-K at 800°C vs. 22.1 W/m-K for IN740H, 24.4 W/m-K for H230, 23.4 W/m-K for 316SS, 26.3 W/m-K for 304SS, 45 W/m-K for SiC)
- Retention of stiffness and strength at 800°C
 (E ≥ 28x10⁶ psi/193 GPa; σ_F ≥ 50x10³ psi/350 MPa at RT and at 800°C)
- ◆ Enhanced toughness w.r.t. conventional monolithic ceramics (K_{1C} = 9.4 MPa⋅m^{1/2} vs. ≤ 0.8 MPa⋅m^{1/2} for Pyrex, ≤ 1.4 MPa⋅m^{1/2} for concrete, ≤ 4.8 MPa⋅m^{1/2} for Hexoloy SiC)

- High melting point and chemical compatibility (Tie line between ZrC and W, limited mutual solubility, T_{Solidus} = 2,800°C)
- Thermal expansion match (W: 4.5x10⁻⁶/°C - 9.2x10⁻⁶/°C from RT to 2700°C, ZrC: 4.0x10⁻⁶/°C - 10.2x10⁻⁶/°C from RT to 2700°C)
- High thermal conductivity (κ = 66.0 W/m-K at 800°C vs. 22.1 W/m-K for IN740H, 24.4 W/m-K for H230, 23.4 W/m-K for 316SS, 26.3 W/m-K for 304SS, 45 W/m-K for SiC)
- Retention of stiffness and strength at 800°C
 (E ≥ 28x10⁶ psi/193 GPa; σ_F ≥ 50x10³ psi/350 MPa at RT and at 800°C)
- ◆ Enhanced toughness w.r.t. conventional monolithic ceramics (K_{1C} = 9.4 MPa⋅m^{1/2} vs. ≤ 0.8 MPa⋅m^{1/2} for Pyrex, ≤ 1.4 MPa⋅m^{1/2} for concrete, ≤ 4.8 MPa⋅m^{1/2} for Hexoloy SiC)
- Formable porous preforms, net-shape/size reactive conversion process (pressing, green machining, 3-D printing, stamping, casting; pressureless reactive melt infiltration at < 1350°C)

Near Net-Shape/Net-Size Reactive Conversion

1 cm

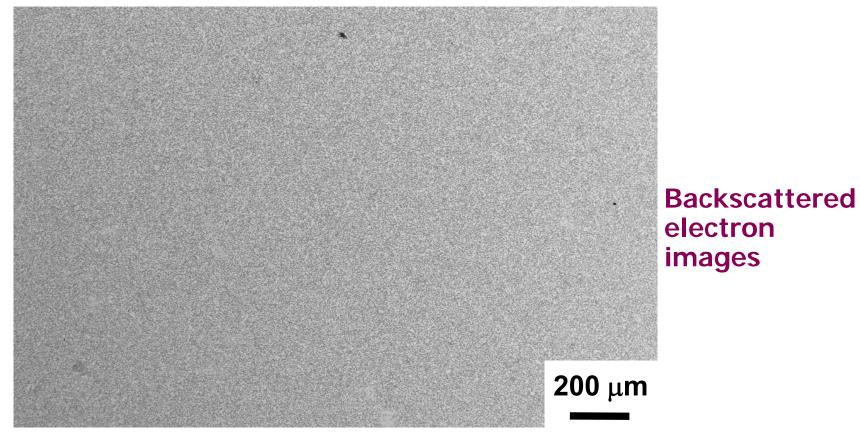
CNC-Machined 50% Porous WC Nozzle


CNC Machining of a Porous WC Preform

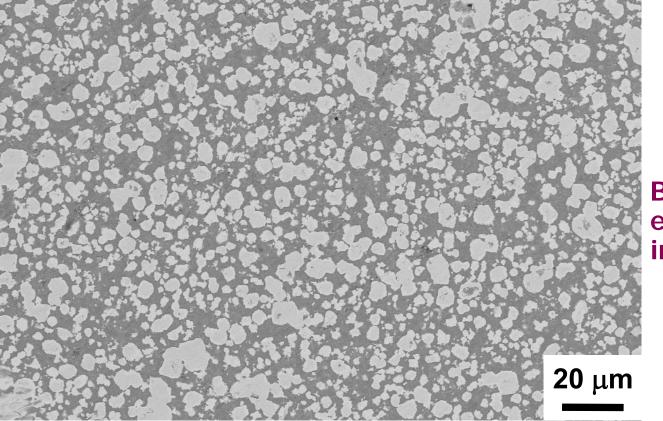
Model 7300 Prototyping and Production Mill (Flashcut CNC, Deerfield, IL)


3-D Printing of a Porous WC Preform

Model 310 3-D Printer, Z-Corp., Burlington, MA


Near Net-Shape/Net-Size Reactive Conversion

WC + {Zr} => ZrC + W


Dense DCP-derived ZrC/W Composite

Polished cross-section of a dense, reactivelyconverted ZrC/W composite

PURDUE

Dense DCP-derived ZrC/W Composite

Backscattered electron images

Polished cross-section of a dense, reactivelyconverted ZrC/W composite

Near Net-Shape/Net-Size Reactive Conversion

Ρ

IRDUE

UNIVERSITY

Specimen	Nozzle Exit Outer Diameter	Nozzle Entrance Outer Diameter	Nozzle Height
WC Preform (left)	50.65 <u>+</u> 0.09 mm	37.50 <u>+</u> 0.08 mm	32.13 <u>+</u> 0.22 mm
ZrC/W Nozzle (right)	50.32 <u>+</u> 0.16 mm	37.23 <u>+</u> 0.07 mm	32.00 <u>+</u> 0.30 mm
	∆D/D _o : -0.6 <u>+</u> 0.1%	∆D/D _o : -0.7 <u>+</u> 0.1%	∆H/H₀: -0.4 <u>+</u> 0.2%

Solid Fuel Rocket Nozzles

- Temperatures in excess of 2500°C within 1 sec
- ♦ Al₂O₃(I) and gas products traveling at supersonic speeds (≥2,500 m/s)
- New materials that are:
 - high melting
 - thermal shock resistant
 - erosion resistant
 - lightweight
 - non-porous
 - inexpensive (raw material, nozzle fabrication)

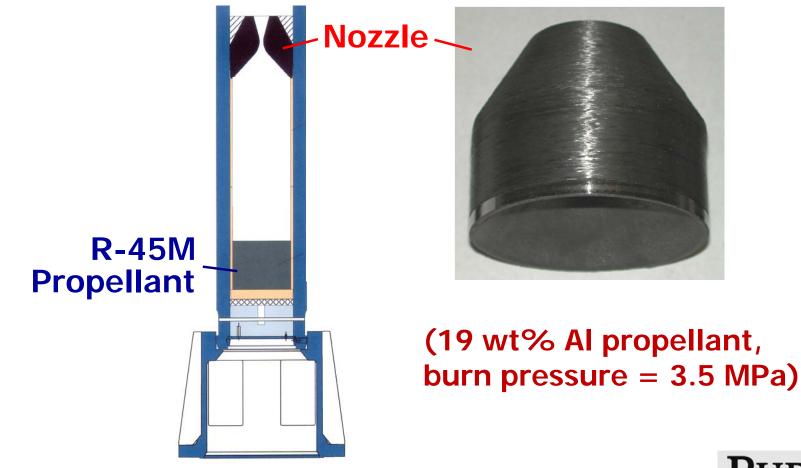
are needed

Gel Casting of Porous WC Preforms

Gel Casting of Porous WC Preforms

Gel Casting of Porous WC Preforms

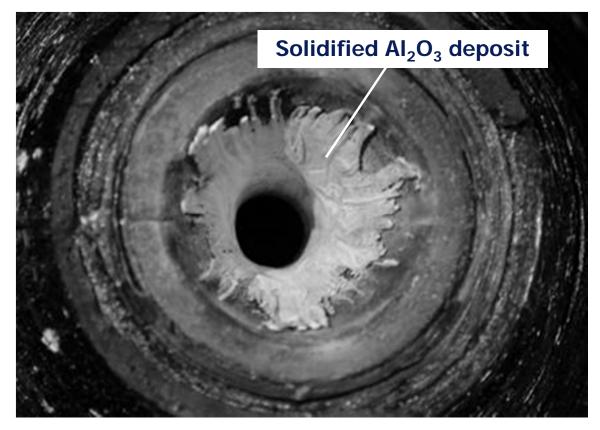
Rigid, Porous WC Nozzle Insert Preforms


Dense ZrC/W-based Rocket Nozzle Inserts

$(\Delta D/D_o = -0.4\% \pm 0.2\%)$ 9.65 to 9.63 cm, 3.05 to 3.03 cm)

Pi-K Rocket Nozzle Test (Edwards AFB)

(with Wes Hoffman, EAFB)


Pi-K Rocket Nozzle Test (Edwards AFB)

(19 wt% Al propellant, burn pressure = 3.5 MPa)

Pi-K Rocket Nozzle Test (Edwards AFB)

Top-down view into ZrC/W nozzle after the Pi-K rocket test

 Design and fabrication of robust net-shape/net-size cermet components tailored for other sCO₂ systems (collaborative research for nuclear, natural gas, other power systems)

- Design and fabrication of robust net-shape/net-size cermet components tailored for other sCO₂ systems (collaborative research for nuclear, natural gas, other power systems)
- Further thermomechanical testing, and coding, of high-temperature cermets

(with National Laboratory, industry, and government partners)

- Design and fabrication of robust net-shape/net-size cermet components tailored for other sCO₂ systems (collaborative research for nuclear, natural gas, other power systems)
- Further thermomechanical testing, and coding, of high-temperature cermets

(with National Laboratory, industry, and government partners)

 Interface design and integration of high-temperature cermets components with structural metal alloys (chemical/structural tailoring of robust interfaces; development of bonding methods)

- Design and fabrication of robust net-shape/net-size cermet components tailored for other sCO₂ systems (collaborative research for nuclear, natural gas, other power systems)
- Further thermomechanical testing, and coding, of high-temperature cermets
 (with National Laboratory, industry, and government partners)

(with National Laboratory, industry, and government partners)

- Interface design and integration of high-temperature cermets components with structural metal alloys (chemical/structural tailoring of robust interfaces; development of bonding methods)
- Scaleup of cermet component manufacturing and systems testing (forming, reactive conversion, bonding; with product development, manufacturing, and application partners)

Processing and Properties of Robust Ceramic/Metal Composites for Heat Exchangers Operating at <u>></u>750°C with Supercritical CO₂

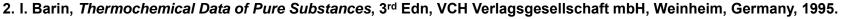
Mario Caccia¹, Meysam Tabandeh-Khorshid¹, Grigoris Itskos¹, Alex R. Strayer¹, Adam S. Caldwell¹, Sandeep Pidaparti², Supattra Singnisai¹, Andrew D. Rohskopf², Anthony M. Schroeder³, Andres M. Rossy⁴, Dorrin Jarrahbashi², Taegyu Kang², Seshadev Sahoo¹, Ioanna Itskou¹, Edgar Lara-Curzio⁴, Mark H. Anderson³, Asegun Henry², Devesh Ranjan², <u>Kenneth H. Sandhage¹</u>

 ¹School of Materials Engineering, Purdue University, W. Lafayette, IN USA
 ²School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA USA
 ³Department of Engineering Physics, University of Wisconsin, Madison, WI USA
 ⁴Division of Materials Science and Technology, Oak Ridge National Laboratory, Oak Ridge, TN USA

Questions?

Ken H. Sandhage Reilly Professor of Materials Engineering School of Materials Engineering Purdue University W. Lafayatte, IN USA E-mail: sandhage@purdue.edu

High-Temperature Corrosion Resistance to sCO₂


Oxidizable materials (e.g., ZrC/W, stainless steels or other metal alloys) can be endowed with enhanced high-temperature oxidation resistance in sCO₂-based fluids via use of a new concept (PCT/U.S. Patent AppIn¹):

a supercritical buffered (reducing) CO-CO₂ fluid

Modest CO additions to CO₂ can dramatically lower the equilibrium oxygen fugacity, f_{O2}, of the CO₂-based fluid:

 $2CO + O_2 = 2CO_2$

- ⇒ the addition of just 10 ppm CO in CO₂ at 750°C yields an equilibrium $f_{O_2} = 1.7 \times 10^{-10}$ atm (1 atm total pressure)²
- Relatively noble metals, such as copper, can be rendered inert in sCO/CO₂ fluids with modest CO contents
- 1. K. H. Sandhage, "Method for Enhancing Corrosion Resistance of Oxidizable Materials and Components Made Therefrom," *PCT/U.S. Patent Application*, 2017 (*U.S. Provisional Patent Application*, 2016).

