University R & D Session

Two Phase Modeling in sCO, Power Cycles

2017.3.29

Jeong IK Lee

Associate Professor Dept. of Nuclear & Quantum Engineering, KAIST

Issues Studied in KAIST

- Nuclear propulsion for maritime transport and waste heat recovery systems need to minimize human operators' involvement during operation if sCO₂ power cycle technologies are used.
- This leads to the motivation of developing more intelligent power system control technology.
- However, both systems (potentially or partially) operate in the two phase region.
- Physical modeling of a CO₂ two phase system is necessary for the development of more intelligent control system
 Big data generation for training

CO₂ Two Phase System

<Nuclear marine application>
<SAVANNAH (1959-1972), 15MW> <HYUNDAI, HiMSEN engine, 10MW>

<KAIST, KAIST-MMR, 12MW>

Compressing Near the Critical Point

Operating results with various compressor inlet conditions.

- Phase changing experiment
 - 1. Supercritical to Liquid case

2. Liquid to 2-phase case

CO₂ Two Phase Flow Modeling

CO₂ Two Phase Flow in Turbomachinery

<Static pressure, 7.47MPa 31.5°C >

<Static temperature, 7.47MPa 31.5°C>

	Two-phase VOF	Single phase
Inlet condition	7.48MPa, 31.6℃	7.50MPa, 31.7°C
Compressor efficiency	18.7%	18.1%
Pressure ratio	1.114	1.113
Flow coefficient	0.0203	0.0206

CO₂ Two Phase Pressure Drop

1. Single-phase cases

<PCHE correlations from SCO2PE> Reference, (Baik et al. 2017)

> $f = 0.2992 \text{R}e^{-0.19}$ (15000 < Re < 85000)

P = 6.99 ~ 7.45 MPa T = 20.2 ~ 34.4 °C m = 0.956~ 0.995kg/s

2. Two-phase cases

$$f_h = A \cdot Re_h^n$$
, $\frac{1}{\mu_h} = \frac{x}{\mu_g} + \frac{1-x}{\mu_f}$

In case of a homogeneous flow, the 2-phase multiplier is equal to

corrected
$$\phi_{go}^2 = max \left[1, -20.3 \left(\frac{P}{P_{crit}} \right) + 19.9 \right] \left[x + \frac{v_f}{v_g} (1-x) \right] \left[\frac{\mu_g}{\mu_f} + x \left(\frac{\mu_f - \mu_g}{\mu_f} \right) \right]^n$$

Operating range of the test P = 6.62 ~ 6.82 MPa T = 26.3 ~ 27.5 ℃ x = 0.768 ~ 0.996

CO₂ Two Phase Heat Transfer

Table. Previous studies on CO₂ condensation heat transfer

	Reference	Channel diameter (mm)	Mass velocity (kg/m ² s)	Condensation temperature (°C)
a.	Zhang et al.	0.9	180, 360, 540	-5 ~ 15
b.	Heo et al.	1.5, 0.78, 0.68	400 ~ 800	-5 ~ 5
с.	Kim et al.	3.51	200 ~ 800	-25 and -15
d.	Zilly et al.	6.1	171 ~ 445	-25 and -15
e.	Jang and Hrnjak	6.1	200 ~ 400	-25 and -15
f.	Park and Hrnjak	0.89	200 ~ 800	-25 and -15

Table. Previous studies on CO₂ boiling heat transfer

	Reference	Channel diameter (mm)	Mass velocity (kg/m ² s)	Boiling temperature (°C)
g.	Pettersen	0.8	190 ~ 570	0 ~ 25
h.	Pettersen	0.98	100 ~ 580	0, 20
i.	Huai et al.	1.31	130 ~ 400	-3 ~ 17
j.	Wang et al.	0.7, 1, 2	360 ~ 1440	15
k.	Siegismund and Kauffeld	0.81	10 ~ 100	0 ~ 10
l.	Koyama et al.	1.8	100 ~ 250	0 and 10
m.	Yun and Kim	0.98, 2	500-3000	0, 5, 10
n	Yun et al.	1.08 ~ 1.54	200 ~ 400	0, 5, 10

- Several researches related to the CO₂ boiling and condensation has been carried out.
- But, the studies near the critical point region are still not widely conducted yet.

CO₂ Two Phase Heat Transfer

Results

	Tin ('C)	Pin(MPa)	Tout ('C)	Pout(MPa)	Xout	mass flow rate (kg/s)
Case1	27.66	6.82	27.41	6.80	0.883	1.016
Case2	27.52	6.82	27.33	6.79	0.872	1.010
Case20	26.48	6.66	26.29	6.63	0.771	1.009
Case21	26.43	6.65	26.24	6.62	0.768	1.010

in PCHE

<The test cases and experimental data>

CO₂ Two Phase System Modeling

SCO₂PE loop modeling (a cooling performance increasing situation)

✓ Results of KAIST-STA code show that reasonably similar to the SCO₂PE experimental data under the transient condition not only in the single-phase, but also in the 2-phase condition.

CO₂ Two Phase System Modeling

100~0% load reduction operation (using Core bypass control and Inventory control)

Design parameter	Safety limit	Part load operation
Fuel centerline temperature	2507 ℃	838 ℃
Peak cladding temperature (ODS)	1200 ℃	669.4 °C
Maximum coolant temperature	676 ℃	556.0 ℃
Maximum system pressure	24 MPa	20 MPa
Turbine rotational speed	125% of nominal speed	100.4%

Core power

800

1000

> Part load operation of KAIST-MMR is properly carried out with the KAIST-STA code and CO_2 two-phase correlations.

Recent R&D Activities in KAIST

> Cycle studies

- Developing a multiphase system transient analysis code for an industrial application of sCO₂ power cycle.
- In collaboration with Saudi Aramco for developing a cycle and control strategies of direct fired sCO₂ power cycle.
- Created a thermodynamic framework of using an isothermal turbomachinery for an sCO₂ power cycle.
- Suggested and demonstrated a new way of optimizing cycle design and control parameters that can accelerate the calculation by two orders of magnitude compared to the genetic algorithm.

Recent R&D Activities in KAIST

- > Turbomachinery
 - Testing a multiphase critical flow for sCO₂ turbomachinery seal design.
 - Experimental and theoretical investigation of fluid induced instability in magnetic bearing and gas foil bearing operating in high pressure sCO₂ conditions.

Heat Exchanger

- Developed a new approach for an off-design modeling (including multiphase region) of PCHE in sCO₂ power cycle that can accelerate the calculation time by an order of magnitude.
- Demonstrated that artificial neural network can be used for predicting the inner pinch during sCO₂ power cycle design with high reliability and speed.

