sCO₂ for WHR

Barriers to Entry and Help Needed

EPS100 & Dual rail WHR cycle

WHR cycle

EPS100 first commercial-scale sCO₂ engine

 Advanced cycle architecture to deliver high efficiency heat recovery

sCO₂ vs steam

- Normalized to steam power & cost from GT-Pro, "power-optimized" solutions ("cost-optimized" point shown for reference)
- Same exhaust and boundary conditions used for sCO₂
- 10-20% lower cost for same power
- 7-14% higher power for same cost

LCOE comparisons

- Case studies covering 30-800+MW
- Plant LCOE consistently lower with sCO₂

Barriers to entry

- Technical risk
- Market driven economics

A simple LCOE analysis

- 2 cases
 - Simple (open) cycle gas turbine (SC)
 - Combined cycle gas turbine, with generic bottoming cycle (BC)
- Calculate an LCOE for SC by itself, and incremental LCOE for BC

LCOE inputs


```
where \beta = Levelized carrying charge factor or cost of money C = Total plant cost ($) H = Annual operating hours P = Net rated output (kW) P = Levelized fuel cost ($/kWh) P = Levelized fuel cost ($/kWh) P = Net rated efficiency of the combined-cycle plant (LHV) P = Net rated O&M costs ($/kW-yr) P = Net rated O&M costs ($/kW-yr)
```

Assumptions:

- Ignore O&M costs for now
- SC efficiency of 38% (range is 36-41%)
- 80% utilization

Breakeven LCOE

- SC LCOE has both capex and fuel costs
- BC LCOE has capex contribution only
- Below "breakeven" fuel cost, SC plant produces power at lower LCOE than CC plant

Current SC and BC costs

- From GTW Handbook & GT-Pro analysis
- 20-50MW class GTs (aeroderivatives)=\$1000/\$3000 per kW
- 100+MW class GTs (frames) = \$550/\$1300 per kW

Fuel price history (US)

Low natural gas prices, and 20-50MW GT scales make for a difficult value proposition

"Help needed"

- Higher natural gas prices would help... but not much control
- Need to make the jump to larger GT sizes
 - Financial risk mitigation needs reasonable (2-3 years) operation
 - 20-50MW commercial operation will require financial assistance (carbon credits, favorable PPA) to make economic-only value proposition work
 - Emphasize water-free operation, low O&M potential
 - Expand to target markets with either higher gas prices or applications with fundamentally different economics