

Sal Golub

Associate Deputy Assistant Secretary for Nuclear Technology Research and Development Supercritical Carbon Dioxide (sCO₂) Power Cycles for Advanced Reactor Technologies

Presidential and Departmental Nuclear Energy Priorities

- President Trump ordered review of nuclear energy policy:

"[W]e will begin to revive and expand our nuclear energy sector... which produces clean, renewable and emissions-free energy. A complete review of U.S. nuclear energy policy will help us find new ways to revitalize this crucial energy resource."

- Commercialization of advanced SMRs crucial to future of US nuclear sector
- White House National Security Strategy:

"We will improve America's technological edge in energy, including nuclear technology, next-generation nuclear reactors..."

- Executive Order Promoting Energy Independence and Economic Growth
- Nuclear energy role as clean baseload power is key to environmental challenges:

"If you really care about this environment that we live in... then you need to be a supporter of this [nuclear energy] amazingly clean, resilient, safe, reliable source of energy." Secretary Rick Perry at Press conference, May 10th

- Make nuclear cool again and inform citizenry regarding nuclear energy's attributes
- Waste Policy: Restarting Yucca process and developing interim storage capability

Comprehensive Civil Nuclear Energy Policy Review

Supercritical CO₂ Power Cycles Applications

COAL

SOLAR

NUCLEAR

Diverse fuel/

heat sources

WASTE MFG. HEAT

NATURAL GAS

Supercritical CO₂ a highly efficient working fluid

Higher thermal efficiencies, smaller physical footprint, and

lower capital costs

(than conventional steam-based power generation)

Cleaner, more affordable electricity

Nuclear Energy – sCO₂ Cycle Motivation and Approach

- Key to future advanced reactor deployments is improved economics
 - Reduced capital cost
 - Reduced operations and maintenance costs
 - Improved performance
- NE initially focused on Sodium Fast Reactor (SFR) application
 - Target commercialization of the sCO_2 system in an SFR by 2030
 - Assumes Recompression Closed Brayton Cycle (RCBC) at a turbine inlet of 550 C
 - Establish capabilities for integrated system testing to increase component TRLs
 - Establish dynamic system models
 - Explore chemical and material interactions between sodium and sCO2
- Establish partnerships with industry to advance systems and components for use in higher temperature nuclear reactor concepts
 - High Temperature Gas Cooled Reactors and Molten Salt Reactors (up to 750 C)

Nuclear Energy sCO₂ Energy Conversion Program

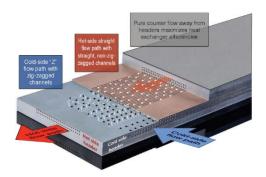
Critical Investments in Infrastructure: Development Platforms

- Established component development platforms for:
 - Turbomachinery
 - Natural Circulation
 - Seals & Bearing
 - Heat Exchangers & Headers
 - Materials
 - Chemical interactions
 - Dynamic Modeling & System Integration

Compressor/ Seal Test Loop

Lab-scale test Article Turbo-compressor

Natural Circulation Loop


Development Platforms (continued)

Heat Exchanger Development

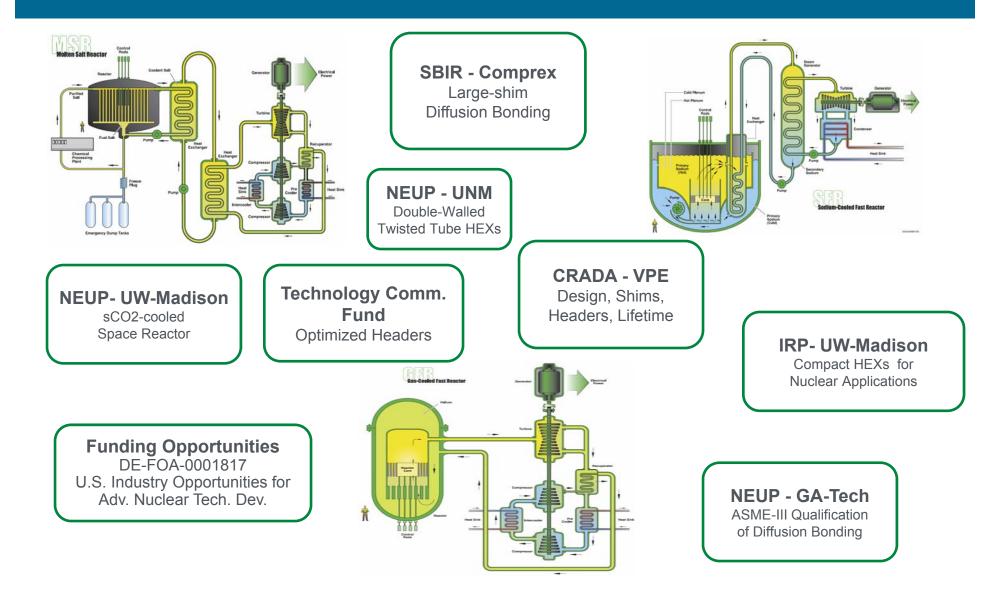
- Developed SEARCH software and instrumented test loop
- Established CRADA with Vacuum Process
 Engineering

Results

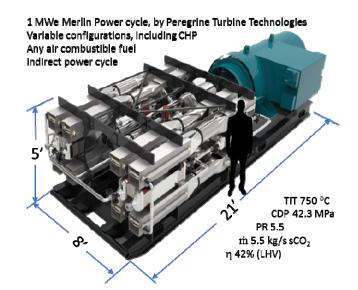
- Technology Transfer Award
- ASME Certification of VPE micro-channel HEX manufacturing


SEARCH Licensed (FLC 2016 Tech Transfer Award)

Worlds Largest Bonder

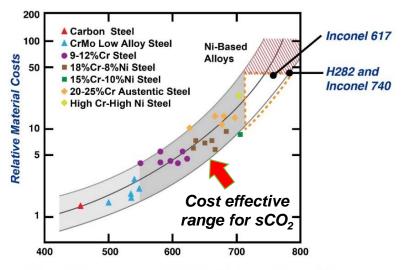


Heat Exchanger Test Loop

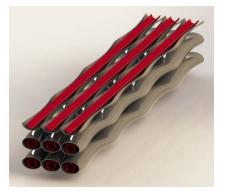


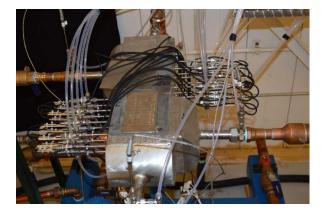
Partnership Mechanisms

Key Areas of Research: Turbomachinery


- Goal: Develop suitable designs for higher temperatures and power densities of CO2 power cycles
- Challenge: Process conditions challenge current bearing and seal designs
- **Path forward:** Working with labs, industry, program offices to optimize designs for performance, cost, and durability.
 - Testing 1 MWe system
 - Initiate redesign RCBC DP reliable parallel compression testing
 - Long-term testing under various operating conditions

Key Areas of Research: Materials


- **Goal:** develop low-cost materials compatible with sCO₂ under extreme process conditions
- Challenge: Temperatures >700 C and 300 bar challenge today's super alloys. Lower-cost, high-performing materials and manufacturing techniques are needed for long-term durability
- Path forward: Design, develop, quantify, and certify materials and to accelerate advanced manufacturing and joining techniques
 - Develop an sCO₂ materials consortium
 - Coupon testing at elevated pressures
 and temperatures



Allowable Temperature at 49 MPa Maximum Stress (°C)

Key Areas of Research: Recuperator / Heat Exchanger

- **Goal:** Develop low-cost, compact heat exchangers to handle higher temperatures and differential pressures
- **Challenge**: current designs require expensive manufacturing and materials to transfer heat efficiently while also tolerating high temperature and pressure differentials.
- **Path forward:** Work with labs and industry to develop new manufacturing techniques and explore new component designs to improve performance
 - Perform larger scale testing of diffusion bonds
 - Complete sodium-CO₂ interaction experiments
 - Continue lifetime testing and new materials for PCHE

Key Areas of Research: Systems Analysis/Modeling

- **Goal:** Assess sCO₂ process viability in today's competitive market
- Challenge: More data is needed on fluid properties under extreme, atypical conditions to validate models and optimize critical systems
- **Path forward:** Collaborate with industry, labs, and other partners to obtain relevant test data
 - Initial public release of Plant Dynamic Code
 - Develop modeling tools and optimize RCBC parameters for LCOE
 - Utilize development platforms to acquire performance data

http://computation.llnl.gov/catalyst-supercomputer

Conclusions

- Improved economics and performance are essential to the future expansion of nuclear energy technologies
- The sCO₂ power cycle has the potential to offer higher efficiency and lower cost across a wide range of applications
- The Office of Nuclear Energy will partner with industry, academia and other stakeholders to accelerate innovative technology development

