Computational Modeling of a Direct Fired Oxy-Fuel Combustor for sCO2 Power Cycles

Jacob Delimont, Ph.D. Nathan Andrews Southwest Research Institute

Lalit Chordia, Ph.D. **Thar Energy L.L.C.**

HIGH TEMP

RECUPERATOR

Work supported by US DOE under DE-FE002401

LOW TEMP

RECUPERATOR

Outline

- Background and Project Objectives
- Geometry and Boundary Conditions
- Combustor CFD Results
- Conclusions

sCO₂ Oxy-Combustion

- Oxygen + fuel + CO2
- Designer can choose the O2/CO2 ratio, unlike typical gas turbine combustors
- Easy CO2 capture
- ASU to produce oxygen

Current Objectives

- Design a 1 MW thermal oxy-fuel combustor capable of generating 1200°C outlet temperature
- Manufacture and assemble a combustor and test loop, and commission oxy-fuel combustor
- Evaluate and characterize combustor performance
 - Optical access for advanced diagnostics
- Paper Objective: Publish sample baseline geometry for others

Outline

- Background and Project Objectives
- Geometry and Boundary Conditions
- Combustor CFD Results
- Conclusions
- Future Work

Conceptual Combustor Design

Kinetics Knowledge Base

Limited data available – Current UCF and Georgia Tech projects

sCO2 Symposium 2018

Chemical Reaction Kinetics

Current simulations employ reduced mechanism created by Georgia Tech. Leverages 12 chemical species and 25 reactions.

Computational Design

- Early design efforts constrained by high inlet temperatures needed to operate in a recompression cycle ~900°C combustor inlet
- Recuperator technology unlikely to be able to support those temperature in the near future
- Lower inlet temperature allow for easier design of submerged aerodynamic components
- Auto-ignition, sudden expansion, trapped vortex and swirl type injection explored

Injector Geometry

- 16 straight swirler passages, 30° radial swirl w/ 10°down angle
- Swirl passage area remains constant when angle is changed
- 8 fuel injectors inject fuel midway through swirler passage

Combustor Geometry

- Effusion cooling on combustor head and liner between head and dilution holes
- 0.05" wide dilution cooling slots, 1" apart

sCO2 Symposium 2018

Effusion Type Boundary Condition

- Effusion boundary condition created by mass source in first near wall element
- Energy source also used to make fluid injection temperature

CFD Domain and Setup

- Computational domain:
 - ¼ Domain w/ periodic boundaries
 - 1.125 MM elements
 - 5-6 Wall inflation layers
- CFD Modeling Setup:
 - Pseudo Steady State RANS, Realizable k- ϵ model, Standard wall function
 - Compressibility, Ideal Gas EOS, C_p polynomials, gas mixture rules
 - Pressure outlet @ 2% total pressure loss
 - Mass flow inlets

sCO2 Symposium 2018

ANSYS B18.0

Design and Off-design CFD Boundary Conditions

- Design point simulations
- Off-Design: Unique problem of sCO2 oxyfuel combustion is the cold startup case
 - Roughly order magnitude change in density

	Design		Fast Start
	Point	Cold Start	Ramp
CO ₂ Mass Flow (kg/s)	1.53	1.02	1.02
Pressure (bar)	200.00	133.33	133.33
CO ₂ Inlet Temp (°C)	700	50	150
CO ₂ Density (kg/m^3)	104.2	649.4	203.5
O ₂ Mass Flow (kg/s)	0.0806	0.0806	0.1360
CH ₄ Mass Flow (kg/s)	0.0200	0.0200	0.0338

Outline

- Background and Project Objectives
- Geometry and Boundary Conditions
- Combustor CFD Results
- Conclusions

Temperature Predictions

CO Concentrations

Selected Results with Dilution

- Fairly strong recirculation zone
- High temperature near walls
 - Adiabatic wall boundary conditions
 - Additional cooling

Residence Time

- Combustor is designed to allow for a fairly long residence time
- For fluid not trapped in recirculation – ~0.02s in primary zone

Cold Start Case

Possible Flame Holding Concerns

- Fuel injected within swirler passage
- Startup case where velocity is much lower than design point

sCO2 Symposium 2018

Fast Start Loop Ramp

Outline

- Background and Project Objectives
- Geometry and Boundary Conditions
- Combustor CFD Results
- Conclusions

Simulations Summary

- Rapid iteration on geometry variations
 - RANS
 - Relatively course Tet meshes
 - Reduced mechanism
- Design and off-design cases considered
- Effort to develop a functional 1MWth scale oxy-fuel combustor

Conclusions

- Simplified combustor geometry presented
 - Not exact geometry which will be manufactured
 - Very useful geometry for trending changes to geometry
- Design appears to work well at design point
- Fast loop ramping case may be too aggressive
- Cold state case needs real gas properties

QUESTIONS?

