6th Supercritical CO₂ Power Cycle Pittsburgh, March 27-29, 2018

Effects of Reduced Kinetic Models on the Simulation of sCO₂ Oxy-Combustion

Zefang Liu, Xiang Gao, Miad Karimi, Bradley Ochs, Vishal Acharya, Wenting Sun Georgia Institute of Technology

> Jacob Delimont, Nathan Andrews Southwest Research Institute

This work is supported by U.S. Department of Energy (Award Number: DE-FE0025174, Program Office: Seth Lawson).

- 1. Introduction
- 2. Kinetic model reduction and optimization
- 3. Numerical simulations using 3 different kinetic models
- 4. Conclusions

Introduction

- Advantages of directly fired supercritical carbon dioxide (SCO₂) oxy-combustion power cycle:
 - Increase the efficiency
 - Capture up to 99% of carbon
- A validated kinetic model is missing but needed:
 - Lack relevant experimental data for kinetic model validation
- Our goals:
 - Demonstrate the effect of kinetic model selection on combustor design
 - Reduce computational resource from using detailed kinetic models

Kinetic model reduction and optimization

- Kinetic model selection
- Kinetic model reduction and optimization

Kinetic model reduction and optimization: Model selection

Measured autoignition delays of $CH_4/O_2/CO_2$ mixture (5:10:85) and simulation using kinetic models at 105 atm (preliminary data of the shock tube from Dr. Sun's group)

- To: select a proper kinetic model for sCO₂ condition
- The experimental results deviate approximately 40% for USC Mech II and 100% for GRI 3.0
- Also, Coogan et al. (2016) also shows "USC Mech II has the best overall performance" (over 70% CO₂ dilute and 10-85 atm)
- Reduction & optimization: USC
 Mech II → 13 species model
- Comparison: GRI 3.0 → 24 species model by Global Pathway Selection (GPS¹) algorithm (reduction only)

1. Gao, X., Yang, S., and Sun, W., "A global pathway selection algorithm for the reduction of detailed chemical kinetic mechanisms," Combustion and Flame, Vol. 167, 2016, pp. 238-247. doi: 10.1016/j.combustflame.2016.02.007.

Kinetic model reduction and optimization: **Georgia** Model reduction & optimization

- To: get an optimized 13 species kinetic model
- Reduction:
 - based on the USC Mech II (111 species and 784 reactions)
 - 13 species selected with GPS
- Optimization:
 - a genetic algorithm
 - objective function: autoignition delay
 - "genes": pre-exponential factors
- Covering conditions:
 - Pressure:150 300 bar
 - Temperature: 900 1800 K
 - Equivalence ratio: 0.7 1.3
 - CO₂ dilute: around 90%
- Less than 13% error relative to that of USC Mech II → accuracy & efficiency

Fig. Flowchart of genetic algorithm

Kinetic model reduction and optimization: Model optimization

After optimization

Before optimization

Numerical simulations using 3 different kinetic models

- **5 species** model built in ANSYS Fluent
- **24 species** model reduced from GRI Mech 3.0
- 13 species model reduced and optimized from USC Mech II

Numerical simulations using 3 different kinetic models: OD, autoignition delay

- Model: Cantera ideal gas constant pressure reactor
- Autoignition delay time:
 - Lower T₀: 5 species > 24 species > 13 species
 - Higher T₀: 13 species > 24 species > 5 species

Numerical simulations using 3 different kinetic models: 1D, laminar flame speed

- Model: Cantera free flame
- Flame speed: diffusion control vs. autoignition control

T₀=800K: 13-species > 24-species
 > 5-species, little change with φ

Numerical simulations using 3 different kinetic models: 1D, laminar flame speed

- Model: Cantera free flame
- Flame speed: diffusion control vs. autoignition control

T₀=1200K: 5-species > 24-species
 > 13-species, little change with φ

Numerical simulations using 3 different kinetic models: 3D, crossflow combustor

Numerical simulations using 3 different **Georgia** kinetic models: 3D, temperature

- 5 species: 2 steps chemistry, fastest temperature raising
- 24 species: faster chemistry
- 13 species: slower temperature raising, a longer autoignition delay
- Similar results with the autoignition delay (0D model) of 91% CO₂ dilute and 1200 K

Numerical simulations using 3 different **Georgia** kinetic models: 3D, heat of reactions

- Reaction speed: 5 species > 24 species
 > 13 species
- Similar results with the autoignition delay (0D model) of 91% CO₂ dilute and 1200 K

Numerical simulations using 3 different $\mathbf{Georgia}_{kinetic models: 3D, CH_4 \& O_2 mass fraction} \mathbf{Georgia}_{kinetic models: 3D, CH_4 \& O_2 mass fraction}$

Numerical simulations using 3 different kinetic models: 3D, CO mass fraction **Georgia**

• 5 spceies model:

- Y(CO) < 0.05%
- 2-step chemistry

• 24 spceies model:

- High CO mass fraction near the wall
- Diffusion from flame and production from HCCO and CH₃ (lack of O₂)
- 13 species model:
 - larger reaction zone

Kinetic model	Area-weighted average mass fraction of CO at outlet
5 species	4.876e-5
24 species	4.476e-3
13 species	3.065e-3

4/11/2018

Wall Effect – 24 Species

4/11/2018

Numerical simulations using 3 different **Georgia** kinetic models: 3D, H₂O mass fraction

- Similar to temperature result
- Most heat: H₂O

Wall Effect – 24 Species

Conclusions

- Kinetic model reduction and optimization:
 - Section: <u>USC Mech II</u>
 - Reduction: <u>13 species kinetic model</u> by Global Pathway Selection
 - Optimization: <u>optimized 13 species kinetic model</u> by genetic algorithm (13% error)
- Numerical comparison between 3 different kinetic models:
 - autoignition delay (200bar, 91% CO₂ dilute):
 - $T_0 < 1000$ K: 5 species > 24 species > 13 species
 - T_0 >1000K: 13 species > 24 species > 5 species
- The simulation is sensitive to kinetic models
 - 200bar, 1200K and 91% CO₂:
 - 5 species: faster chemistry
 - 24 species kinetic model: wall effect
 - Optimized 13 species kinetic model: longer autoignition delay → incomplete combustion

Questions?

- Optimized 13 species kinetic model
- 13 species: CH_4 , CH_3 , CH_2O , HCO, CO, H, O, O_2 , OH, H_2O , H_2O_2 , HO_2 , and CO_2
- Download: <u>http://sun.gatech.edu/download.htm</u>

Kinetic models

24 species kinetic model

- From GRI 3.0
- 24 species: CH₂(S), CH₂O, O₂, CH₂CHO, CH₃O, H₂O₂, CH₂, CH₃, CH₄, HO₂, HCCO, CO, H, O, C₂H₆, C₂H₅, C₂H₄, C₂H₃, HCO, OH, H₂, H₂O, CH₂CO, and CO₂
- 130 reactions

5 species kinetic model

- From ANSYS Fluent
- 5 Species:
 - CH_4 , O_2 , CO, CO_2 , and CH_4
- 3 reactions:
 - $CH_4+1.5O_2\rightarrow CO+2H_2O$
 - $CO + 0.5O_2 \leftrightarrow CO_2$

Numerical simulations using 3 different kinetic models: 3D, CO₂ mass fraction

