Printed Circuit Heat Exchanger and Finned-Tube Heat Exchanger Modeling for a Supercritical CO₂ Power Cycle

Vamshi K. Avadhanula
Systems Engineer

Timothy J. Held
Chief Technology Officer

Luke R. Magyar
Systems Engineering Intern
Objectives of today’s discussion

1. Heat exchangers in present study
 a) Printed circuit HX (HRHX and RHX)
 b) Finned-tube HX (PHX and ACC)
2. Test system configuration
3. HX modeling in GT-SUITE
4. HX model validation
5. Results and discussion
6. Summary
sCO₂ cycles are highly dependent upon recuperation.

Low PR = high turbine outlet temperature, large amount of unused enthalpy.
Printed Circuit Heat Exchangers (PCHE)

- Recuperators (RHX): This high degree of recuperation requires high conductance (UA) and high operating pressures demand for advanced compact HX technology.
- Used as heat rejection HX (HRHX) in sCO₂ cycles for direct water cooling option.
- Consists of layers of chemically etched metal plates in a diffusion-bonded assembly.
- RHX and HRHX models are validated for transient and steady-state performance against measured data from EPS100 testing.

>15MW
>300m² heat transfer area
~13000kg
Core ~ 1.5 x 1.5 x 0.5 m

Comparable S&T:
>850m²
~50000kg
Shell ~ 1.2m diameter x 12m length
Finned-Tube Heat Exchangers

- Primary heat exchangers (PHX): In gas turbine exhaust heat recovery of \(\text{sCO}_2 \) power cycles, finned-tube HX are used for exhaust gas-to-\(\text{CO}_2 \) (heat source) heat transfer.
- Air cooled condenser/cooler (ACC): In \(\text{sCO}_2 \) power cycle finned-tube HX are used for \(\text{CO}_2 \)-to-air (heat sink) heat transfer which also allow for complete water-free operation.
- Consists of series of tube banks with circular louvered fins brazed on surface of each tube.
- As no test data was available from testing of these heat exchangers in \(\text{sCO}_2 \) applications, they were modeled based on manufacturer-supplied design point data.
Test System: 7.3MWe net power sCO₂ cycle

Focus of current study

EPS100 – commercial sCO₂ power cycle
- 350 hours of testing
- 3.1MWe max output power
- Numerous transient events (planned & otherwise)
Modeling Platform

- GT-SUITE 1D engineering system simulation software was used
- Component templates can be GT supplied or user defined templates or Fortran models
- Individual component models were first developed and validated against test data
- Described in ASME GT2017-63279
PCHE Model: RHX and HRHX

- Counterflow model based on Plate & Frame heat exchanger template
- Inlet temperatures, pressures and flows are imposed boundary conditions
- Heat transferred (hot and cold sides independently) and hot/cold side pressure drops are outputs
- HTC and dP models include calibration to selected steady-state data points
- RHX was modeled as single-phase heat transfer where as the HRHX is modeled as two-phase heat transfer
HRHX and RHX Model Validation

Heat Exchanger Outlet Temperature

Recuperator and HRHX outlet temperatures from validation simulation

Heat Exchanger Pressure Drop

Recuperator and HRHX pressure drops from validation simulation
Crossflow model based on built-in fin-tube heat exchanger template
- Manufacturer-provided design point data was used for calibration
- PHX is a single tube-bundle heat exchanger unit and modeled as single-phase heat transfer with CO$_2$ on tube side and gas turbine exhaust on fin side.
- ACC has 7-bays with each bay consisting of single tube-bundle heat exchanger unit and 3-fans per bay.
- ACC is modeled as two-phase heat transfer with CO$_2$ on tube side and air on fin side.
PHX and ACC Model Validation

PHX Outlet Temperatures

ACC CO₂ Outlet Temperature

PHX CO₂ and exhaust outlet temperatures from validation

ACC CO₂ outlet temperatures from validation (seven bays simulation)
Results: Recuperator (PCHE)
Results: Heat rejection HX (PCHE)
Results: HRHX transient response

HRHX HTR and CO2 Flow: Test Data

- TestData: CO2 Side kW
- TestData: Water Side kW
- TestData: CO2 Flow

Water outlet temperature measuring instrumentation was 70 feet away from HRHX.

HRHX HTR: Simulation

- Simulation: CO2 kW
- Simulation: Water kW
- Simulation: Water kW (Estimated)

Calculated water side heat transfer rate from simulation data with outlet temperature considered at 70 feet away from HRHX (to match the test measurement conditions).
Results: PCHE transient response - RHX

Recuperator Heat Transfer Rate Comparison

- Test Data: Hot
- Test Data: Cold
- Simulation: Hot Side
- Simulation: Cold Side

Heat transfer rate [kW]

Time [s]
Results: Fin-tube transient response – PHX

PHX Transient Response for Step Change in Exhaust Temperature

- Simulation: Exhaust Heat Transfer Rate
- Simulation: CO2 Heat Transfer Rate
- Exhaust Temperature

PHX Transient Response for Step Change in Exhaust Flow

- Simulation: Exhaust Heat Transfer Rate
- Simulation: CO2 Heat Transfer Rate
- Exhaust Flow
Results: Fin-tube transient response – ACC

![Graph 1: ACC Heat Transfer Rate for Step Change in CO2 Flow](image1)

![Graph 2: ACC Heat Transfer Rate for Step Change in CO2 Inlet Temperature](image2)
Results: PHX transient response – Exhaust flow direction
Summary

- GT-SUITE 1D system simulation code was used to study the transient and steady state response of PCHE and Fin-tube HX.
- The quasi-steady-state as well as transient heat transfer behavior of the heat exchangers, and the single-phase and two-phase pressure drop behavior, can be modeled with reasonable accuracy. Good agreement between transient simulation results and test data was observed.
- Due to highly compact nature of PCHEs, the transient response time for a fluid is very short for any changes in inlet conditions on other fluid side, while the finned-tube heat exchangers have a transient response time approximately two orders of magnitude longer.
- In an sCO2 power cycle field installation, the finned-tube heat exchangers will define the system time constants, which will also define the plant control system requirements.

\[mc \frac{dT}{dt} = UA (\Delta T_m - \Delta T_{m,ss}) \]

\[\tau = \frac{mc}{UA} \]

<table>
<thead>
<tr>
<th>Paper # 139</th>
<th>HRHX (PCHE)</th>
<th>Recuperator (PCHE)</th>
<th>PHX (Finned-tube HE)</th>
<th>ACC (Finned-tube HE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass (kg)</td>
<td>14890</td>
<td>3470</td>
<td>54431</td>
<td>46274 (One Bay)</td>
</tr>
<tr>
<td>UA (kW/K)</td>
<td>4811</td>
<td>201</td>
<td>196</td>
<td>402</td>
</tr>
<tr>
<td>(\tau) (seconds)</td>
<td>1.5</td>
<td>9</td>
<td>139</td>
<td>60</td>
</tr>
</tbody>
</table>
System Model: Boundary Conditions

Cold water flowrate (kg/s)

Cold water temperature (°C)
Boundary conditions