
Steady State and Transient 
Modeling for the 10 MWe 
SCO2 Test Facility Program

Megan Huang, CJ Tang, Aaron McClung
March 28, 2018

DOE NETL DE‐FE0028979



DOE C & CBTL Workshop 22
Slide 2

 SCO2 Test Facility Program Overview
 Steady State Modeling

 Modeling Assumptions
 Optimization Parameters
 Initial Results
 Impact of Results

 Transient Modeling 
 Conclusion

Agenda



DOE C & CBTL Workshop 33
Slide 3

 Funded by DOE NETL
 6 year program started in October 2016
 Design, construct, and build test facility in San Antonio, Texas

 700°C or higher turbine inlet temperature
 10 MWe net RCBC configuration
 Simple Cycle configuration also to be tested

 Objectives
 Demonstrate operability of SCO2 cycle
 Verify performance of components
 Show potential for producing lower COE
 Demonstrate potential and pathway for thermodynamic η > 50% in commercial applications

SCO2 Test Facility Program
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 Steady State Modeling
 Provides input for technical specifications for each equipment
 Component sizing and optimization based on a 10 MWe RCBC configuration with 715°C turbine inlet 

temperature

 3 modeling tools used
 Ensures accuracy and repeatability of results

Steady State Modeling: Overview

Organization Steady State Modeling Tool

Gas Technology Institute Aspen Plus

General Electric Global Research Aspen Hysys

Southwest Research Institute  Numerical Propulsion System Simulation 
(NPSS)
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 Thermodynamic property method: REFPROP
 Turbomachinery performance maps provided by GE
 Recuperator parameters:

 5°C approach temperature
 0.7 bar pressure drop per side

 Heat source pressure drop was 4 bar
 Initial piping pressure drops based on past GTI layout of a commercial scale plant

Steady State Modeling: Assumptions
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Steady State Modeling: Aspen Models

Simple Cycle Pilot Plant Aspen Plus Model

Net Plant Power = 6.5 MWe
Cycle η = 30.8%
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Steady State Modeling: Aspen Models

RCBC Pilot Plant Aspen Plus Model

Net Plant Power = 10.4 MWe
Cycle η = 46.2%
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 3 elements to achieving high cycle efficiency for a given net power output
 Maximizing turbine power production
 Minimizing compressor power
 Minimizing heat input into the system

Steady State Modeling: Optimization Parameters
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 Turbine power dependent upon:
 Inlet and outlet conditions
 Mass flow rate
 Turbine efficiency

 Turbine exit pressure needs to be high enough to ensure two phase flow does not 
occur at main compressor inlet

 15% margin on the critical pressure applied in these initial models

Steady State Modeling: Maximizing turbine power 
production 
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 Compressor power dependent upon:
 Inlet and outlet conditions
 Mass flow rate
 Compressor efficiency

 Inlet guide vane (IGV) settings can be adjusted to vary compressor ratios and 
efficiencies

 Complicating factor for RCBC configuration is flow split between compressors, which 
affects efficiency

Steady State Modeling: Minimizing Compressor 
Power
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 2 factors
 1st factor: minimize mass flow rate through heater

 Dependent upon turbine flow function

 2nd factor: Achieve highest cold stream outlet temperature from high temperature 
recuperator (HTR)
 Minimize approach temperature in recuperators
 5°C chosen

Steady State Modeling: Minimizing Heat Input
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 7 cases were modeled

Steady State Modeling: Initial Results
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 Results of the 3 models show good 
agreement for baseline case

 Differences less than 2% generally
 LTR heat duty difference is larger 

due to different pressure drop and 
approach temperature assumptions

Steady State Modeling: Agreement Among 3 
Models
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 Off-design cases results show more 
disagreement

 Smaller difference in system level 
parameters, such as cycle efficiency 
or turbine power

 Larger difference in detail component 
performance, such as IGV setting

 Main reason for discrepancies is off-
design assumptions for recuperator 
performance and minor flow rate 
differences

Steady State Modeling: Agreement Among 3 
Models
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Steady State Modeling: Impact of Results
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 Performance losses due to increased pressure drop

 2 cases modeled to determine impact
1. Maintain baseline compressor pressure ratios → decreasing turbine pressure ratio

 Result: turbine pressure ratio dropped by 2.6%, cycle efficiency dropped by 0.9 points
2. Maintain turbine pressure ratio → increasing compressor pressure ratios

 Result: compressor pressure ratios increased by 3-4%, cycle efficiency dropped by 0.2 points

 More work needed, but initial results show maintaining turbine pressure ratio is better 
for maintaining a higher efficiency

Steady State Modeling: Impact of Results

Pressure Drop (bar)

Initial piping + equipment pressure drop assumption ~12 bar

Initial piping layout + equipment pressure drop ~17 bar
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 Performance losses due to recuperator approach temperature
 Increasing recuperator approach temperature → reduced cycle efficiencies
 One exception: LTR approach temperature

Steady State Modeling: Impact of Results
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 Transient Modeling
 Results will provide insight into operational analysis for the facility

 2 modeling tools will be used
 Ensures accuracy and repeatability of results

Transient Modeling: Overview 

Organization Steady State Modeling Tool

Gas Technology Institute Flownex

General Electric Global 
Research/Southwest Research 
Institute 

Numerical Propulsion System Simulation 
(NPSS)
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 Build/modify steady state models 
 Benchmark these to Aspen Plus & Hysys models
 Develop and implement control system methodology
 Run analysis for various transient cases

Transient Modeling: Next Steps
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 Initial steady state analysis has been performed
 3 different steady state modeling tools: Aspen Plus, Aspen Hysys, NPSS
 Initial results show good agreement among the models for overall performance
 Steady state results have been incorporated into technical specifications for the components
 Updates to steady state models in progress

 Transient modeling of the facility is in progress
 2 modeling tools will be used: Flownex and NPSS
 Results will aid in the operational analysis for the facility

Conclusion
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Thank you!

Questions?

Megan Huang
Megan.Huang@gastechnology.org

Ching‐Jen Tang
tangc@ge.com

Aaron McClung
Aaron.McClung@swri.org


