

Steady State and Transient Modeling for the 10 MWe SCO₂ Test Facility Program

Megan Huang, CJ Tang, Aaron McClung March 28, 2018

DOE NETL DE-FE0028979

Agenda

- SCO₂ Test Facility Program Overview
- Steady State Modeling
 - Modeling Assumptions
 - Optimization Parameters
 - Initial Results
 - Impact of Results
- Transient Modeling
- Conclusion

SCO₂ Test Facility Program

- Funded by DOE NETL
- ➢ 6 year program started in October 2016
- Design, construct, and build test facility in San Antonio, Texas
 - > 700°C or higher turbine inlet temperature
 - > 10 MWe net RCBC configuration
 - Simple Cycle configuration also to be tested
- > Objectives
 - Demonstrate operability of SCO2 cycle
 - Verify performance of components
 - Show potential for producing lower COE
 - > Demonstrate potential and pathway for thermodynamic $\eta > 50\%$ in commercial applications

Steady State Modeling: Overview

- Steady State Modeling
 - > Provides input for technical specifications for each equipment
 - Component sizing and optimization based on a 10 MWe RCBC configuration with 715°C turbine inlet temperature
- > 3 modeling tools used
 - Ensures accuracy and repeatability of results

Organization	Steady State Modeling Tool
Gas Technology Institute	Aspen Plus
General Electric Global Research	Aspen Hysys
Southwest Research Institute	Numerical Propulsion System Simulation (NPSS)

Steady State Modeling: Assumptions

- Thermodynamic property method: REFPROP
- Turbomachinery performance maps provided by GE
- Recuperator parameters:
 - 5°C approach temperature
 - > 0.7 bar pressure drop per side
- Heat source pressure drop was 4 bar
- > Initial piping pressure drops based on past GTI layout of a commercial scale plant

Steady State Modeling: Aspen Models

Simple Cycle Pilot Plant Aspen Plus Model

Steady State Modeling: Aspen Models

Steady State Modeling: Optimization Parameters

- > 3 elements to achieving high cycle efficiency for a given net power output
 - Maximizing turbine power production
 - Minimizing compressor power
 - Minimizing heat input into the system

Parameter	Simple Cycle	Recompression Cycle
Turbine Inlet Temperature	Х	Х
Turbine Inlet Pressure	Х	Х
Turbine Pressure Ratio (Exit Pressure)	Х	Х
Compressor Inlet Guide Vane (IGV) Setting	Х	Х
Flow Split between Compressors		Х

Steady State Modeling: Maximizing turbine power production

- > Turbine power dependent upon:
 - Inlet and outlet conditions
 - Mass flow rate
 - Turbine efficiency
- Turbine exit pressure needs to be high enough to ensure two phase flow does not occur at main compressor inlet
- > 15% margin on the critical pressure applied in these initial models

Steady State Modeling: Minimizing Compressor Power

- Compressor power dependent upon:
 - Inlet and outlet conditions
 - Mass flow rate
 - Compressor efficiency
- Inlet guide vane (IGV) settings can be adjusted to vary compressor ratios and efficiencies
- Complicating factor for RCBC configuration is flow split between compressors, which affects efficiency

Steady State Modeling: Minimizing Heat Input

2 factors

- > 1st factor: minimize mass flow rate through heater
 - Dependent upon turbine flow function
- 2nd factor: Achieve highest cold stream outlet temperature from high temperature recuperator (HTR)
 - Minimize approach temperature in recuperators
 - ➢ 5°C chosen

Steady State Modeling: Initial Results

> 7 cases were modeled

Model Names	Cycle Configuration	Load %	Net Power Level (MWe)	Turbine Inlet Temperature	Turbine Inlet Pressure	Cooler Exit Temperature	Cycle Efficiency
033	Simple	Min	3.6	500°C	170 bar	35°C	26.0%
036	Simple	Max	6.5	500°C	212 bar	35°C	30.8%
051	Recompression	100%	10.4	715°C	250 bar	35°C	46.2%
052	Recompression	100%	7.9	715°C	259 bar	50°C	42.1%
053	Recompression	100%	13.6	715°C	250 bar	20°C	45.2%
054	Recompression	40%	4.0	715°C	170 bar	35°C	39.1%
055	Recompression	100%	7.7	500°C	250 bar	35°C	36.6%

Steady State Modeling: Agreement Among 3 Models

- Results of the 3 models show good agreement for baseline case
- Differences less than 2% generally
- LTR heat duty difference is larger due to different pressure drop and approach temperature assumptions

Parameter	Unit	Aspen Plus	Aspen Hysys	NPSS	Largest Delta
Net Electric Power	MWe	10.4	10.3	10.3	0.96%
Cycle Efficiency	%	46.2	45.7	45.8	1.1%
Turbine Power	MWe	15.6	15.6	15.6	0.06%
Main Comp Power	MWe	2.15	2.15	2.16	0.47%
Bypass Comp Power	MWe	2.68	2.67	2.65	1.1%
Optimized Flow Split to Main Comp	%	66.5	66.7	66.8	0.45%
HTR Heat Duty	MWth	48.0	48.3	48.1	0.48%
LTR Heat Duty	MWth	15.4	14.8	14.7	4.5%
Heater Heat Duty	MWth	22.5	22.5	22.6	0.44%

Steady State Modeling: Agreement Among 3 Models

Parameter	Unit	Aspen Plus	Aspen Hysys	NPSS	Largest Delta
Net Electric Power	MWe	4.0	4.0	3.9	2.5%
Cycle Efficiency	%	39.1	39.5	39.7	1.4%
Turbine Power	MWe	7.75	7.47	7.49	3.9%
Main Comp Power	MWe	1.54	1.50	1.56	4.0%
Bypass Comp Power	MWe	2.06	1.77	1.85	14%
Optimized Flow Split to Main Comp	%	61.0	64.0	63.0	4.9%
HTR Heat Duty	MWth	31.2	30.6	32.95	7.7%
LTR Heat Duty	MWth	8.28	9.13	7.32	20%
Heater Heat Duty	MWth	10.3	10.2	9.9	3. 9 %

- Off-design cases results show more disagreement
- Smaller difference in system level parameters, such as cycle efficiency or turbine power
- Larger difference in detail component performance, such as IGV setting
- Main reason for discrepancies is offdesign assumptions for recuperator performance and minor flow rate differences

Steady State Modeling: Impact of Results

Parameter	10 MWe Pilot Plant	Commercial Plant
Net Plant Capacity	10 MWe	450 MWe
Turbine PR	~3	Same as Pilot
Turbine Efficiency	87.3%	91%
Main Compressor PR	~3	Same as Pilot
Main Compressor Efficiency	78.5%	83%
Bypass Compressor PR	~3	Same as Pilot
Bypass Compressor Efficiency	78.2%	80.1%
Generator Efficiency	97.6%	99%
Gearbox Efficiency	99.3%	N/A
System Pressure Drop	~12 bar	Same as Pilot
Cycle Efficiency	46.2%	50.5%

Steady State Modeling: Impact of Results

Performance losses due to increased pressure drop

	Pressure Drop (bar)
Initial piping + equipment pressure drop assumption	~12 bar
Initial piping layout + equipment pressure drop	~17 bar

- 2 cases modeled to determine impact
 - 1. Maintain baseline compressor pressure ratios \rightarrow decreasing turbine pressure ratio
 - Result: turbine pressure ratio dropped by 2.6%, cycle efficiency dropped by 0.9 points
 - 2. Maintain turbine pressure ratio \rightarrow increasing compressor pressure ratios
 - Result: compressor pressure ratios increased by 3-4%, cycle efficiency dropped by 0.2 points
- More work needed, but initial results show maintaining turbine pressure ratio is better for maintaining a higher efficiency

Steady State Modeling: Impact of Results

- Performance losses due to recuperator approach temperature
 - > Increasing recuperator approach temperature \rightarrow reduced cycle efficiencies
 - > One exception: LTR approach temperature

Transient Modeling: Overview

Transient Modeling

- Results will provide insight into operational analysis for the facility
- > 2 modeling tools will be used
 - Ensures accuracy and repeatability of results

Organization	Steady State Modeling Tool
Gas Technology Institute	Flownex
General Electric Global Research/Southwest Research Institute	Numerical Propulsion System Simulation (NPSS)

Transient Modeling: Next Steps

- Build/modify steady state models
- Benchmark these to Aspen Plus & Hysys models
- Develop and implement control system methodology
- Run analysis for various transient cases

Conclusion

- Initial steady state analysis has been performed
 - > 3 different steady state modeling tools: Aspen Plus, Aspen Hysys, NPSS
 - Initial results show good agreement among the models for overall performance
 - > Steady state results have been incorporated into technical specifications for the components
 - Updates to steady state models in progress
- Transient modeling of the facility is in progress
 - 2 modeling tools will be used: Flownex and NPSS
 - Results will aid in the operational analysis for the facility

Acknowledgement & Disclaimer

Acknowledgement

> This material is based upon work supported by the Department of Energy under Award Numbers DE-FE0028979.

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Thank you!

Questions?

Megan Huang Megan.Huang@gastechnology.org

> Ching-Jen Tang tangc@ge.com

Aaron McClung Aaron.McClung@swri.org

