Sedt

Dynamic modeling and transient analysis of a molten salt heated recompression supercritical CO₂ Brayton cycle

For the 6th International Supercritical CO₂ Power Cycles Symposium

Jinyi ZHANG EDF R&D China 28/03/2018

OUTLINE

Introduction

Supercritical CO₂ Cycle + CSP

- SCO₂, together with high temperature (> 500 °C) molten salt CSP solutions, could achieve higher efficiency than steam solutions.
- The size of CSP plant is between 50MWe and 150MWe, which is suitable for the first industrial demonstration of cycle.
- Recompression cycle is taken for a preliminary cycle dynamics study, because this is the most studied layout with a good balance between complexity and efficiency.

Design

- 100MWe : average size of CSP plant
- Molten salt heated recompression cycle: compatible with current CSP

Introduction

Dynamic Modeling for Control System Design

DYMOLA

}}

OOLS

Predesign

toolbox

Recompression layout

Bypass control

Inventory control with min P protection

Model Description

Turbo-machinery performance model

Model Description

Heat transfer : Heat transfer coefficient

Laminar flow : Interpolation using following table [Hesselgreaves 2001]

	Nu _{z,H1}			Nu _{x,Mi}	
x•	D	D	x•	D	D
0.000458	17.71	17.43	0.0279	4.767	4.339
0.000954	13.72	13.41	0.0351	4.562	4.037
0.00149	11.80	11.37	0.0442	4,429	3.830
0.00208	10.55	10.08	0.0552	4.276	3.686
0.00271	9.605	9.141	0.0686	4.217	3.543
0.00375	8.475	8.127	0.0849	4.156	3.425
0.00493	7.723	7.375	0.105	4.124	3.330
0.00627	7.137	6.788	0.130	4.118	3,265
0.00777	6.556	6.312	0.159	4.108	3.208
0.00946	6.300	5.912	0.196		3,171
0.0128	5.821	5.368	0.241		3.161
0.0168	5.396	4.935	0.261		3.160
0.0217	5.077	4.579	00	4.089	3.160

Turbulent flow : Gnielinski Correlation

Turbulence

$$Nu = \frac{(f_D / 8)(\text{Re}-1000) \text{Pr}}{1 + 12.7 (f_D / 8)^{1/2} (\text{Pr}^{2/3} - 1)} \left(1 + \left(\frac{D_h}{L}\right)^{2/3}\right)$$
$$\frac{1}{\sqrt{f_{fa}}} = 3.48 - 1.7372 \ln\left(2\frac{\varepsilon}{D} - \frac{16.2426}{\text{Re}} \ln\left(\frac{(2\varepsilon / D)^{1.1098}}{6.0983} + \left(\frac{7.149}{\text{Re}}\right)^{0.8981}\right)\right)$$

6

Model Description

Basic control loops

7

Part-load Control Strategies and Result Analysis

Inventory Control

Inventory control with Main compressor inlet pressure protection

Pressure protection is important to protect compressor operation.

Part-load Control Strategies and Result Analysis

RC Bypass control Heater Heater HTR: High Temperature Recuperator HTR: High Temperature Recuperator HTR: High Temperature Recuperator

Bypass Control

Bypass control: the HTR, heater and turbine are bypassed.

Sedf

Part-load Control Strategies and Result Analysis

Inventory + Bypass Control

amount of inventory discharging, the bypass

control will stop.

Conclusion

Perspectives

- A realistic dynamic model of sCO₂ recompression cycle is realized in Dymola.
- Inventory control and bypass control is a good solution for power down, but for power up, inventory control is the only choice in the current stage, whose response is not fast;

Validation and More Control Aspects

- An 20kWth experimental loop is set at the end of 2017, in collaboration with Zhejiang University, which is used to
 - Study pressure drop and heat transfer coefficients
 - Test the cycle dynamics and validate the dynamic model developed for the loop
- Mass management system will be designed to see its impact on inventory control performance;
- Investigate other part-load control strategies, in order to propose an optimized global control strategy with a good balance between efficiency and response speed for the whole range of load;
- MSOT and TIT control will be further replaced by a multi-variable control;
- Real-time optimization will be implemented to improve cycle efficiency during operation;

Merci 谢谢

Contact: Jinyi.zhang@edf.fr

0

0

PADE

.

.

0