

Development of A Transient Analysis Code for S-CO2 Power Conversion System

ChunTian Gao, Pan Wu, JianQiang Shan, Bin Zhang

School of Nuclear Science and Technology, Xi'an Jiaotong University

The 6th Supercritical CO2 Power Cycles Symposium - 2018 March 27-29, 2018, Pittsburgh, Pennsylvania

CONTENTS

Introduction

2

PART 1

INTRODUCTION

- SCTRAN/CO2 development
- Initial verification for component model
- Initial verification for loop simulation
- Conclusion & expectation

PART 1 INTRODUCTION

■S-CO2 Brayton Cycle

S-CO2 Brayton Cycle Advantage: **Built up method** Analysis code **Applied in** \checkmark High thermal efficiency S-CO2 Brayton cycle TRACE ✓ Simple configuration ✓ Compact turbomachinery **KAIST Micro Modular** GAMMA+ Reactor(MMR) **Developed** with COMPRESSOR TURBINE Supercritical CO2 Integral GENERATOR MARS an exist Transient Experimental Loop (SCIEL) analysis code SCO2 cooled fast reactors RELAP5-3D Sodium cooled fast reactor MMS-LMR **KALIMER-600 GAS-PASS Developed** with **Plant Dynamics** S-CO2 Brayton cycle coupled REACTOR to lead-cooled fast reactor nothing Code (PDC) RECUPERATOR PRECOOLER A Simple Brayton Cycle Layout 3 核安全与运行研究室

				11 // //
PART 1	PART 2	PART 3	PART 4	PART 5
INTRODUCTION	COMPONENT MODELS	COMPONENT MODEL VERIFICATION	LOOP SIMULATION VERIFICATION	CONCLUSION

Transient analysis code used in S-CO2 Brayton Cycle

PART 2 SCTRAN/CO2 Development

SCTRAN introduction

Component model needed for SCTRAN/CO2

✓ Constitutive model

- ✓ Compressor model
- ✓ Gas turbine model
- ✓ Shaft model

Δ

			权 文	生习些门例先到
PART 1	PART 2	PART 3	PART 4	PART 5
INTRODUCTION	SCTRAN/CO2 DEVELOPMENT	COMPONENT MODEL VERIFICATION	LOOP SIMULATION VERIFICATION	CONCLUSION

2.1 SCTRAN Introduction

2.2 Constitutive Model

2.2 Constitutive Model

Heat transfer correlation

Gnielinski Correlation:

 $N_{u} = \frac{hD_{e}}{\lambda} = \frac{(f/8)(\text{Re}-1000)\text{Pr}}{1+12.7\sqrt{(f/8)}(\text{Pr}^{2/3}-1)} , 2300 < \text{Re} < 5 \times 10^{6} , 0.5 < \text{Pr} < 200$

□ Friction correlation

7

$$\frac{1}{\sqrt{f}} = -2\log\left\{\frac{\varepsilon}{3.7D_e} + \frac{2.51}{\text{Re}}\left[1.14 - 2\log\left(\frac{\varepsilon}{D_e} + \frac{21.25}{\text{Re}^{0.9}}\right)\right]\right\} , \text{Re} > 3400$$
$$f = \frac{64}{\text{Re}} , \text{Re} < 2300$$

运行研

PART 1	PART 2	PART 3	PART 4	PART 5
INTRODUCTION	SCTRAN/CO2 DEVELOPMENT	COMPONENT MODEL VERIFICATION	LOOP SIMULATION VERIFICATION	CONCLUSION

2.3 Compressor Model

PART 2

SCTRAN/CO2 DEVELOPMENT

PART 1

INTRODUCTION

Compressor model : Solution ✓ Compressor torque $\tau_{\rm t} = \tau_{\rm s} + \tau_{\rm d} = \frac{m}{m} (h_{2\rm s} - h_{01}) + \frac{m}{m} (h_{02} - h_{2s})$ ✓ Ideal outlet fluid enthalpy $h_{2s} = h_{01} + \int_{P_1}^{P_2} v_m * dp$ among, $P_2 = P_1 * R_P$ \checkmark Realistic outlet fluid enthalpy $\eta_{ad} = \frac{h_{2s} - h_{01}}{h_{02} - h_{01}}$ 8

PART 3

COMPONENT MODEL VERIFICATION

2.3 Compressor Model

Compressor model : Intergrated in SCTRAN

✓ Total torque of compressor

$$\tau_{t} = \tau_{s} + \tau_{d} = \frac{m}{\omega} (h_{2s} - h_{01}) + \frac{m}{\omega} (h_{02} - h_{2s}) = \frac{m}{\omega} \frac{1}{\eta_{ad}} (h_{2s} - h_{01}) = \frac{m}{\omega} \frac{1}{\eta_{ad}} \frac{P_{1}^{T}(R_{p} - 1)}{\rho_{m}} = \frac{m}{\omega} \frac{1}{\eta_{ad}} \frac{(P_{2} - P_{1})}{\rho_{m}} = \frac{m}{\omega} \frac{(P_{2} - P_{1})}{\rho_{m}} = \frac{m}{\omega} \frac{(P_{2} - P_{1})}{\rho_{m}} = \frac{m}{\omega} \frac{(P_{2} - P_{1})}{\rho_{m}}$$

 \checkmark Compressor work added on fluid

The compressor incorporated in SCTRAN/CO2

与运行研究室

PART 1	PART 2	PART 3	PART 4	PART 5
INTRODUCTION	SCTRAN/CO2 DEVELOPMENT	COMPONENT MODEL VERIFICATION	LOOP SIMULATION VERIFICATION	CONCLUSION

2.3 Compressor Model

Compressor model : Performance Map

2.4 Turbine Model

$$\Delta h = \frac{h_2^T - h_1^T}{\eta_{ad}}$$

✓ pressure drop

$$\Delta P = P_1 \left(R_p - 1 \right)$$

✓ total torque of gas turbine

$$\tau = \frac{m\eta \left(P_1 - P_2\right)}{\omega \rho_m}$$

			A A	主马ح门列儿主
PART 1	PART 2	PART 3	PART 4	PART 5
INTRODUCTION	SCTRAN/CO2 DEVELOPMENT	COMPONENT MODEL VERIFICATION	LOOP SIMULATION VERIFICATION	CONCLUSION

2.5 Shaft Model

✓ Mode 1(without control system)

 $\omega_{T,i} = \omega_{C,k} = \omega_{Shaft} = User difined$

✓ Mode 2(with control system)

$$\sum_{i} I_{I} \frac{d\omega}{dt} = \sum_{m} \tau_{T,m} - \sum_{n} \tau_{C,n} + \tau_{g}$$

Among:

$$\tau_g = C * \tau_{g,i}$$

PART 1	PART 2	PART 3	PART 4	PART 5
INTRODUCTION	SCTRAN/CO2 DEVELOPMENT	COMPONENT MODEL VERIFICATION	LOOP SIMULATION VERIFICATION	CONCLUSION

PART 3 COMPONENT MODEL VERIFICATION

➤Thermal property verification

➢ PCHE model verification

13

Compressor model verification

			核安	全与运行研究室
PART 1	PART 2	PART 3	PART 4	PART 5
INTRODUCTION	SCTRAN/CO2 DEVELOPMENT	COMPONENT MODEL VERIFICATION	LOOP SIMULATION VERIFICATION	CONCLUSION

3.1 Thermal Property Package Verification

Relative prediction error of the developed CO2 property package compared to NIST REFPROP 9.0

CO ₂ Property	Symbol	Regions	Relative Error
Saturated Liquid Enthalpy	h _f	-	±0.015%
Saturated Vapor Enthalpy	h _g	-	±0.009%
		Subcooled area	(-0.05% ,0.1%), 99% of which is within relative errors of $\pm 0.05\%$
Temperature	т	Superheated region 1	(-0.2%, +0.2%) , 99% of which is within relative errors of $\pm 0.1\%$
		Superheated region 2	(-0.1%,0.25%), 99% of which is within relative errors of \pm 0.05%
		Subcooled area	(-0.5%,1%) , 99% of which is within relative errors of \pm 0.5%
Specific Volume	v	Superheated region 1	(-1%,4%) , 99% of which is within relative errors of \pm 1.0%
		Superheated region 2	(-0.5%,0.1%) $$, 99% of which is within relative errors of \pm 0.1%
Thermal Condutivity	λ	-	(-30%, 40%) near the critical region , (-2%,+2%) at other regions
Dynamic Viscosity	μ	-	(-1.5%,0.5%) , 99% of which is within relative errors of \pm 0.5%
14			核安全与运行研究等

PART 1	PART 2	PART 3	PART 4	PART 5
INTRODUCTION	SCTRAN/CO2 DEVELOPMENT	COMPONENT MODEL VERIFICATION	LOOP SIMULATION VERIFICATION	CONCLUSION

3.2 PCHE Model Verification

Friction model code programming verification

Experimental Conditions:

The temperature range : 30-150°C;

The pressure range : 3.5-40 MPa;

The Reynolds number range : $200-2.0 \times 10^6$;

The surface relative roughness (ratio of roughness over tube diameter) : 0.005, 0.015 and 0.025.

Carbon dioxide gas source; 2. Circulation tank; 3. Gas booster pump; 4. Heating system;
 Pressure sensors; 6. Measuring pipeline; 7. Differential pressure sensors; 8. cooling unit;
 Gas circulation pump; 10, 11, 12. temperature sensors

Comparison with experimental data for friction coefficient of various roughness

核安全与运行研究室

PART 1	PART 2	PART 3	PART 4	PART 5
INTRODUCTION	SCTRAN/CO2 DEVELOPMENT	COMPONENT MODEL VERIFICATION	LOOP SIMULATION VERIFICATION	CONCLUSION

3.2 PCHE Model Verification

PCHE model verification

Built in: ANL

Composed of: Cooling water system CO₂ Circle System Pressure Stabilizing System

Focused on: Water and CO₂ heat transfer characteristic in PCHE

核安全与运行研究室

 PART 1
 PART 2
 PART 3
 PART 4

 INTRODUCTION
 SCTRAN/CO2 DEVELOPMENT
 COMPONENT MODEL VERIFICATION
 LOOP SIMULATION VERIFICATION

JOSH VAN METER PCHE Experimental Loop

3.2 PCHE Model Verification

TECT NO		CO ₂ Side		H ₂ O	Side
TEST_NO.	Pressure	Flowrate	Temp_In	Flowrate	Temp_In
B6	8.003	100.53	88.63	701.59	35.63
B7	8.001	200.77	88.1	699.78	35.11
B8	7.972	297.14	89.36	701.8	35.05
В9	8.003	401.01	87.92	701.77	33.28
B10	7.995	500.61	87.93	700.09	31.28
B11	8.003	100.03	87.68	697.8	37.68
B12	8.005	199.73	88.85	697.8	37.53
B13	7.998	301.31	88.17	699.86	37.48
B14	8.02	404.29	88.97	701.62	37.58
B15	7.998	501.79	88.09	702.25	36.83

PCHE model verification

PCHE modeling results : PCHE fluid outlet temperatures

核安全与运行研究室

PART 1	PART 2	PART 3	PART 4	PART 5
INTRODUCTION	SCTRAN/CO2 DEVELOPMENT	COMPONENT MODEL VERIFICATION	LOOP SIMULATION VERIFICATION	CONCLUSION

3.3 Compressor Model Verification

Compressor model verification

Nodalization of 18 the recompressing compressor Boundary conditions: TDV 341:9.08MPa, 363K

Operation parameters: Relative flowrate: 0.4-1.0 Relative speed:0.5,0.8,1.0

Result:

The compressor model in SCTRAN/CO2 is able to predict the compressor consuming power.

$$W_{c,v} = \frac{1}{m \frac{1}{\eta_{ad}}} \frac{P_1\left(R_p - 1\right)}{\rho_m}$$

Predicted compressor consuming power by SCTRAN/CO2 and RELAP5-3D

核安	全与运	行研究	「室

PART 1	PART 2	PART 3	PART 4	PART 5
INTRODUCTION	SCTRAN/CO2 DEVELOPMENT	COMPONENT MODEL VERIFICATION	LOOP SIMULATION VERIFICATION	CONCLUSION

PART 4 LOOP SIMULATION VERIFICATION

≻S-CO₂ PE Loop

≻IST Loop

 19
 校安全与运行研究室

 PART 1
 PART 2
 PART 3
 PART 4
 PART 5

 INTRODUCTION
 SCTRAN/CO2 DEVELOPMENT
 COMPONENT MODEL VERIFICATION
 LOOP SIMULATION VERIFICATION
 CONCLUSION

4.1 S-CO2 PE Loop Simulation Verification

S-CO2 PE Loop Steady State Simulation

PART 1	PART 2	PART 3	PART 4	PART 5
INTRODUCTION	SCTRAN/CO2 DEVELOPMENT	COMPONENT MODEL VERIFICATION	LOOP SIMULATION VERIFICATION	CONCLUSION

核安全与运行研究室

4.1 S-CO2 PE Loop Simulation Verification

S-CO2 PE Loop Transient Simulation

Pressure and temperature variation during the cooling reduction transient

Transient: water flowrate from 0.25 kg/s to 0.17 kg/s in 60 second

Result:

the relative error of pressure is within 1% ; the error of temp is within 2 °C.

核安全与运行研究室

PART 1	PART 2	PART 3	PART 4	PART 5
INTRODUCTION	SCTRAN/CO2 DEVELOPMENT	COMPONENT MODEL VERIFICATION	LOOP SIMULATION VERIFICATION	CONCLUSION

4.2 IST Loop Simulation Verification

■ IST Loop Full Power Heat Balance Simulation

Comparison of SCTRAN/CO2 predicted and the IST designed steady state result

Designed	SCTRAN/CO2	Error		
CO2 Loop Flowrate(lbm/s)				
11.1	10.99	-0.99%		
Max Temperature Difference(F)				
486.4	487.6	1.2		
Max Pressure Difference(psi)				
2345.3	2356.8	1.2%		

Conclusion:

 The SCTRAN/CO2 is able to simulate S-CO2 Brayton cycle
 Transient process isn't
 presented

核安全与运行研究室

PART 1	PART 2	PART 3	PART 4	PART 5
INTRODUCTION	SCTRAN/CO2 DEVELOPMENT	COMPONENT MODEL VERIFICATION	LOOP SIMULATION VERIFICATION	CONCLUSION

PART 5 CONCLUSION & EXPECTATION

Conclusion

- ✓ The PCHE model can predict the fluid outlet temperature at steady state.
- ✓ The compressor model of SCTRAN/CO2 can predict accurate compressor consuming power, which indicate it can be used for Brayton cycle simulation.
- Transient simulation of SCO2PE and steady state simulation of IST indicate that SCTRAN/CO2 owns the ability to conduct transient simulations for S-CO2 Brayton cycle.

Expectation

- $\checkmark~$ The firction model for PCHE model should be validated
- ✓ The transient validation for PCHE model is wanted
- ✓ To do some control strategy analysis for brayton cycle with our newly developed code

PART 1	PART 2	PART 3	PART 4	PART 5
INTRODUCTION	SCTRAN/CO2 DEVELOPMENT	COMPONENT MODEL VERIFICATION	LOOP SIMULATION VERIFICATION	CONCLUSION

THANK YOU Welcom your suggestions!

