

Oregon State University

Comparison of Grade 91 and 347H Corrosion Resistance in the Low-Temperature Components of Direct Supercritical CO2 Power Cycles

R. Repukaiti^{a,b}, L. Teeter^{a,b}, M. Ziomek-Moroz^b, Ö.N. Doğan^b, N. J. Huerta^b, R. B. Thomas^{b,c}, R. P. Oleksak^{b,c}, J. Baltrus^b, J.D. Tucker^a

^aMechanical, Industrial, and Manufacturing Engineering Department, Oregon State University, Corvallis, OR 97330, USA ^bNational Energy Technology Laboratory, U.S. Department of Energy, Albany, OR 97321, USA ^cAECOM, Albany, OR 97321, USA

COLLEGE OF ENGINEERING

6th sCO₂ Power Cycles Symposium March 27-29, 2018 Pittsburgh, Pennsylvania

Outline

- Heat Exchangers
- Literature review

• Materials and Methods

- Stainless Steel Grade 347H and Ferritic-Martensitic Grade P91
- Experimental Procedure

• Results and Discussion

- Weight measurement
- Corrosion products characterization
- Conclusion

Heat Exchangers

- Direct sCO₂ cycle fluid (Allam et al.)
 - Typical fluid composition: $CO_2/H_2O/O_2 (95\%/4\%/1\%)$
 - Pressure range : 3 to 35MPa

Oregon State University College of Engineering

- Temperature range: Room Temperature to 750°C
- Phase change: Dissolved H_2O in $sCO_2 \rightarrow Aqueous$ fluid of CO_2

Source: R. Allam, et al. "Demonstration of the Allam cycle: an update on the development status of a high efficiency supercritical carbon dioxide power process employing full carbon capture." Energy Procedia 114 (2017): 5948-5966

Literature Review

• Presence of water exacerbates Impacts of aqueous condensation corrosion degradation 0.3 25 Mass Change/Surface Corrosion rate 0.25 (mm/year) Area [mg/cm²] 20 0.2 15 **P91** 0.15 - Water rich phase 0.1 10 347H 0.05 CO₂ rich phase 5 0 0 245°C with H₂O 245°C without H₂O 5 7 3 9 condensation condensation Pressure (MPa) Mass change of steels at 245°C with a H₂O condensation variable Carbon steel in water rich and CO₂ rich phases at 50°C [Repukaiti et al.] [Choi et al.]

Source:

Repukaiti, R., Teeter, L., Ziomek-Moroz, M., Doğan, Ö., & Tucker, J. (2017). Corrosion Behavior of Steels in Supercritical CO2 for Power Cycle Applications. ECS Transactions, 77(11), 799-808. Choi, Y., & Nesic, S. (2009). Corrosion Behavior of Carbon Steel in Supercritical CO2 - Water Environments. National Association of Corrosion Engineers, P.O. Box 218340 Houston TX 77084 USA. [np]. 22-26 Mar 2009. 2009., National Association of Corrosion Engineers, P.O. Box 218340 Houston TX 77084 USA. [np]. 22-26 Mar 2009.

Outline

- Introduction
 - Heat Exchangers
 - Literature review

• Materials and Methods

- Stainless Steel Grade 347H and Ferritic-Martensitic Grade P91
- Experimental Procedure
- Results and Discussion
 - Weight measurement
 - Corrosion products characterization
- Conclusion

Materials

- Stainless steel 347H
- Martensitic-ferritic steel P91

Alloy	Description	Cr	Ni	С	Mn	Р	Мо	Fe
347H	Austenitic stainless steel	17.3	9.09	0.05	1.5	0.03	0.41	Balance
P91	Ferritic-martensitic steel	8.37	0.09	0.09	0.45	0.01	0.9	Balance

- Sample dimension: $20 \times 25 \times 6$ mm with a 6 mm diameter hole
- 1200 grit SiC sandpaper surface finish

Immersion Test Configuration

CO2 and H2O Phase Diagrams

Pressure: 8 MPa, 95% CO_2 : 1% O_2 molar ratio Temperature: 50°C, 100°C, 150°C, and 245°C

Source: NIST Standard Reference Database, Material measurement laboratory, Data Gateway." 1977, Chemistry WebBook. Data collected.

Solubility of CO₂ in pure H₂O as functions of temperature and pressure [*Duan et al.*]

Solubility of O₂ in pure water as functions of temperature and pressure [*Geng et al.*]

Source: Duan, & Sun. (2003). An improved model calculating CO 2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar. Chemical Geology, 193(3), 257-271. Geng, & Duan. (2010). Prediction of oxygen solubility in pure water and brines up to high temperatures and pressures. Geochimica Et Cosmochimica Acta, 74(19), 5631-5640.

Outline

- Introduction
 - Heat Exchangers
 - Literature review
- Materials and Methods
 - Stainless Steel Grade 347H and Ferritic-Martensitic Grade P91
 - Experimental Procedure

• Results and Discussion

- Weight measurement
- Corrosion products characterization
- Conclusion

P91 Secondary Electron Images

P91 Cross-Sectional Back Scattered Electron Images

M	ounting Material		Mounting Material Copper layer	Mounting Material	
Iron oxide layer		In Progress	Iron oxide layer	Copper layer Iron oxide layer	
Ba	ise metal 20 μm		Base metal30 μm	Base metal 10 µm	
50°C		100°C	150°C	245°C	
	50°C	100°C	150°C	245°C	
	Fe ₂ O ₃	Fe ₂ O ₃	Fe ₂ O ₃	Fe ₂ O ₃	
	FeO(OH)	Fe ₃ O ₄	Fe ₃ O ₄	Fe ₃ O ₄	
Fe ₃ O ₄					

XRD Analysis of P91 Corrosion Products

Pourbaix Diagram of Fe-C02-H20

 $3Fe+ 4H_2O = Fe_3O_4 + 8H^+ + 8e^ Fe_3O_4 + H_2O = 3Fe_2O_3 + 2H^+ + 2e^-$

Source: OLI Systems, Inc. OLE Studio, 2017

347H Secondary Electron Images

Oregon State University College of Engineering

50°C

100°C

150°C

245°C

347H XPS Surface Depth Profile

Weight Change Data

Conclusion

- 347H is more corrosion resistance than P91 in direct-sCO₂ power cycle environment where H₂O condensation takes place
- Residual corrosion products on the P91 coupons were identified as Fe_2O_3 and Fe_3O_4 , while 347H coupons showed minimal mass change and very thin passive layers.
- lower Cr steels such as Grade 91 may not be suitable for the low / intermediate temperature components in the direct sCO₂ power cycles.