Comparison of Grade 91 and 347H Corrosion Resistance in the Low-Temperature Components of Direct Supercritical CO2 Power Cycles

R. Repukaitia,b, L. Teetera,b, M. Ziomek-Morozb, Ö.N. Doğanb, N. J. Huertab, R. B. Thomasb,c, R. P. Oleksakb,c, J. Baltrusb, J.D. Tuckera

aMechanical, Industrial, and Manufacturing Engineering Department, Oregon State University, Corvallis, OR 97330, USA
bNational Energy Technology Laboratory, U.S. Department of Energy, Albany, OR 97321, USA
cAECOM, Albany, OR 97321, USA
Outline

• Introduction
 – Heat Exchangers
 – Literature review

• Materials and Methods
 – Stainless Steel Grade 347H and Ferritic-Martensitic Grade P91
 – Experimental Procedure

• Results and Discussion
 – Weight measurement
 – Corrosion products characterization

• Conclusion
Direct sCO$_2$ cycle fluid (Allam et al.)

- Typical fluid composition: CO$_2$/H$_2$O/O$_2$ (95%/4%/1%)
- Pressure range: 3 to 35MPa
- Temperature range: Room Temperature to 750°C
- Phase change: Dissolved H$_2$O in sCO$_2$ → Aqueous fluid of CO$_2$

Literature Review

- Impacts of aqueous condensation

![Graph showing mass change of steels at 245°C with and without H₂O condensation.]

- Presence of water exacerbates corrosion degradation

![Graph showing corrosion rate of carbon steel in water rich and CO₂ rich phases at 50°C.]

Mass change of steels at 245°C with a H₂O condensation variable [Repukaiti et al.]

Carbon steel in water rich and CO₂ rich phases at 50°C [Choi et al.]

Source:
Outline

• Introduction
 – Heat Exchangers
 – Literature review

• Materials and Methods
 – Stainless Steel Grade 347H and Ferritic-Martensitic Grade P91
 – Experimental Procedure

• Results and Discussion
 – Weight measurement
 – Corrosion products characterization

• Conclusion
Materials

- Stainless steel 347H
- Martensitic-ferritic steel P91

<table>
<thead>
<tr>
<th>Alloy</th>
<th>Description</th>
<th>Cr</th>
<th>Ni</th>
<th>C</th>
<th>Mn</th>
<th>P</th>
<th>Mo</th>
<th>Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>347H</td>
<td>Austenitic stainless steel</td>
<td>17.3</td>
<td>9.09</td>
<td>0.05</td>
<td>1.5</td>
<td>0.03</td>
<td>0.41</td>
<td>Balance</td>
</tr>
<tr>
<td>P91</td>
<td>Ferritic-martensitic steel</td>
<td>8.37</td>
<td>0.09</td>
<td>0.09</td>
<td>0.45</td>
<td>0.01</td>
<td>0.9</td>
<td>Balance</td>
</tr>
</tbody>
</table>

- Sample dimension: 20 × 25 × 6 mm with a 6 mm diameter hole
- 1200 grit SiC sandpaper surface finish
Immersion Test Configuration

- Alloy coupons
- sCO₂ Rich Phase
- H₂O Rich Phase

Graph showing pressure and temperature over time for different temperatures:
- 245°C
- 150°C
- 100°C
- 50°C

Time, total 500 hours

Pressure [MPa]

Temperature [°C]
CO₂ and H₂O Phase Diagrams

Pressure: 8 MPa, 95% CO₂ : 1%O₂ molar ratio
Temperature: 50°C, 100°C, 150°C, and 245°C

CO₂ and O₂ Solubility in H₂O

CO₂

Solubility of CO₂ in pure H₂O as functions of temperature and pressure [Duan et al.]

O₂

Solubility of O₂ in pure water as functions of temperature and pressure [Geng et al.]

Outline

• Introduction
 – Heat Exchangers
 – Literature review

• Materials and Methods
 – Stainless Steel Grade 347H and Ferritic-Martensitic Grade P91
 – Experimental Procedure

• Results and Discussion
 – Weight measurement
 – Corrosion products characterization

• Conclusion
P91 Secondary Electron Images

- 50°C
- 100°C
- 150°C
- 245°C

Spallation
Cracks
P91 Cross-Sectional Back Scattered Electron Images

In Progress

<table>
<thead>
<tr>
<th>50°C</th>
<th>100°C</th>
<th>150°C</th>
<th>245°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe₂O₃</td>
<td>Fe₂O₃</td>
<td>Fe₂O₃</td>
<td>Fe₂O₃</td>
</tr>
<tr>
<td>FeO(OH)</td>
<td>Fe₃O₄</td>
<td>Fe₃O₄</td>
<td>Fe₃O₄</td>
</tr>
<tr>
<td>Fe₃O₄</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

XRD Analysis of P91 Corrosion Products
Pourbaix Diagram of Fe-CO$_2$-H$_2$O

3Fe + 4H$_2$O \Rightarrow Fe$_3$O$_4$ + 8H$^+$ + 8e$^-$

Fe$_3$O$_4$ + H$_2$O \Rightarrow 3Fe$_2$O$_3$ + 2H$^+$ + 2e$^-$

Fe-CO$_2$-H$_2$O in 245 °C and 8 MPa

Fe-CO$_2$-H$_2$O in 50 °C and 8 MPa

Source: OLI Systems, Inc. OLE Studio, 2017
347H XPS Surface Depth Profile

Graphs showing the relative concentration (at%) of Cr, Fe, Ni, and O at different approximate depths (nm) for temperatures of 50°C, 100°C, 150°C, and 245°C.
Weight Change Data

![Graph showing weight change data for different temperatures and water phases.](image)
Conclusion

• 347H is more corrosion resistance than P91 in direct-sCO$_2$ power cycle environment where H$_2$O condensation takes place.

• Residual corrosion products on the P91 coupons were identified as Fe$_2$O$_3$ and Fe$_3$O$_4$, while 347H coupons showed minimal mass change and very thin passive layers.

• lower Cr steels such as Grade 91 may not be suitable for the low / intermediate temperature components in the direct sCO$_2$ power cycles.