

Mechanical and Corrosion Performance of the Weld of 740H and 282

Andrew Brittan

Acknowledgements:

DOE-EE0007120 Special Metals Haynes International

Outline

- ✤ Background
- S-CO₂ Testing Facility
- Sample Design & Procurement
- 740H Results
- ✤ 282 Results
- Other Exposure Work
- Overview & Planned Work

Background

- Ni-based superalloys are being considered for high temperature components due to good corrosion resistance and good mechanical properties at high temperatures.
- 740H and 282 have shown similar mass gain to other superalloys
- 740H is currently code case certified with high allowable stress at high temperatures

4/11/2018

Background

- Failure points of pressure vessels are at the weakest points –welds are common weak points.
 - Important to understand the effect of the CO₂ environment on the mechanical properties of welds.
- <u>Heat Treatment</u>: prolonged exposure of alloys to elevated temperatures causes diffusion and coarsening/depletion of phases.
 - Ni-based superalloys of interest (740H and 282) both utilize γ' phase, Ni₃(Al,Ti,Nb), for high temperature strength
 - Post-annealing or post-weld heat treatments are commonly at 800°C
 - Temperatures of interest for these alloys in my study: 750°C
- <u>Carburization</u>: dissociation of CO₂ into C during oxidation process liberates carbon
 - Typical to find carbides near grain boundaries from simply heat treating these alloys due to compositional carbon
 - Analyze the effect of increased carbon in the system
- Large Concern: Chromium-carbide formation causes Cr-depletion in the matrix increases γ' solubility (they then dissolve into the base matrix)
 - Result = lower strength near carbides.

High Temperature SC-CO₂ Autoclave System at UW-Madison

Current setup of test facility

- Temperature control allows system to operate within ±1.5°C
- Testing temperatures range up to 850°C
- Pressure can be held at up to 25±0.02MPa (temperature dependent)
- System operates at an average flow rate of 0.11kg/hr, which causes a CO₂ refresh rate every two hours
- Real-time gas composition analysis (GCMS, Mass Spectrometer)

Sample Design

- Samples designed to fit ASTM standard while fitting inside autoclaves to be aged in s-CO₂ (ID ≈ 1.5")
- From there, optimized gauge length and tab size according to:
 - Maximum gauge length to incorporate weld/HAZ
 - Large enough tabs to ensure tensile test can be conducted without slippage
 - Hole in one tab in order to suspend during exposure to CO₂ (tab slightly elongated to maintain surface area for gripping during tensile testing)
- Weld placed slightly off-center so as to incorporate all three features of ¹⁾fusion zone, ²⁾heat affected zone, and ³⁾base material within the gauge

Sample Procurement

- Superalloy was procured from and welded by the manufacturers in the form of 0.125" plates:
 - 740H Special Metals
 - 282 Haynes
- Plates were butt-welded using a GTAW process with similar filler metal and given the prescribed PWHT.
- Surface features bead, oxidation, any warping were avoided by machining down from both sides on the plate to ~0.0625" thickness.
- Samples were cut by EDM, transverse to the weld, with additional weld samples for corrosion analysis cut in the space between the gauges.

Welded 740H sample - etched

4/11/2018

Tensile Results – Unexposed

- Prior to exposure, samples were tensile tested in order to ensure weld was of high enough quality for an accurate comparison.
- All testing performed at room temperature.
- Special Metals weld of 740H performed up to their standard.
- Haynes weld was found to have slightly lower properties than found in literature.
 - Haynes confirmed results were within expected tolerances.

	UTS (MPa)	0.2% YS (MPa)	Elongation (%)	Failure Location
740H Unexposed	1,111 ± 6	679 ± 2	$\textbf{38.1}\pm\textbf{1.3}$	N/A
740H-740H Unexposed	1,068 ± 22	759 ± 16	26.3 ± 2.6	Fusion Zone
282 Unexposed	1,105 ± 15	728 ± 7	39.9 ± 0.4	N/A
282-282 Unexposed	867 ± 25	637 ± 11	10.1 ± 1.0	FZ & FZ/HAZ Interface

Testing Conditions

- 1,000 hours of exposure performed continuously
- Environment: research grade CO₂ (99.999% pure)
- •Temperature: 750°C
- Pressure: 20MPa

Tensile Results – 740H

- Base Material Samples:
 - UTS (tensile strength) and YS (yield strength) increased, with only a moderate drop in elongation
 - Effect is consistent with continued aging of material coarsening of γ' precipitates & intergranular carbides
- Welded Samples:
 - Significant drop in UTS and YS, with a large drop in elongation.

	UTS (MPa)	0.2% YS (MPa)	Elongation (%)	Failure Location
740H: Unexposed	1,111 ± 6	681 ± 3	$\textbf{38} \pm \textbf{1.3}$	N/A
740H: 750°C CO ₂	1,187 ± 2	713 ± 3	26 ± 0.5	N/A
Welded 740H: Unexposed	$\textbf{1,068} \pm \textbf{22}$	$\textbf{759} \pm \textbf{16}$	26 ± 2.6	Fusion Zone
Welded 740H: 750°C CO ₂	940 ± 10	638 ± 7	12 ± 2.0	Fusion Zone

740H – Exposure Analysis

- 740H has been shown to have precipitate free zones (PFZ) along grain boundaries after initial heat treatment (due to formation of M₂₃C₆ carbides)¹
- Heat treatment for 1,000 hours at 750°C has been shown to result in:
 - Coarsened grains²
 - Coarsening of γ' precipitates to an average diameter of ~65nm²
 - Precipitation and coarsening of M₂₃C₆ carbides along grain boundaries³
- Need to confirm size of γ' precipitates in both the base material and fusion zone, as well as for any γ'-denuded regions
 - Surface dissolution of γ'?
 - Grain boundary PFZ's?

TEM images of 740H after standard postannealing aging and then aged in 750°C for (a) 300h, (b) 1000h, (c) 3000h, (d) 5000h, (e) 10000h¹

¹ Yan, G. U. O., et al. "Microstructure and phase precipitate behavior of Inconel 740H during aging." *Transactions of Nonferrous Metals Society of China* 26.6 (2016): 1598-1606 ² Yan, Chong, et al. "Microstructure evolution and mechanical properties of Inconel 740H during aging at 750 C." *Materials Science and Engineering:* A 589 (2014): 153-164. ³ DuPont, John N. "Welding of Nickel-based alloys for energy applications." *Welding Journal* 93 (2013): 31-45.

740H – Cross-section Analysis

 <u>Surface Analysis</u>: PFZ with a depth of 1-4µm from oxide. PFZ a result of Cr and Ti-depletion.

- <u>Bulk Analysis</u>: no PFZ observed (using SEM) despite presence of carbides
 - <u>Base Material</u>: continual Crenrichment along grain boundaries (assumed to be carbides)
 - <u>Fusion Zone</u>: intermittent Crenrichment along grain boundaries

University of Wisconsin–Madison

4/11/2018

740H Base Material – Post-Fracture Analysis

- <u>Unexposed</u>:
 - Intergranular fracture combined with micro-void coalescence (MVC).
 - Carbides and γ' precipitated during standard heat treatment, but still relatively small – results in larger dimples indicating better ductility.
- Exposed:
 - Intergranular fracture combined with MVC decrease in dimple size indicating slight embrittlement.
 - Carbides and γ' precipitates coarsened during exposure from prolonged diffusion of alloying elements.

740H Weld – Post-Fracture Analysis

- <u>Unexposed</u>:
 - Intergranular fracture combined with MVC.
 - Carbides and γ' precipitated during post-weld heat treatment, but still relatively small – dimples of size similar to that of base material.
- <u>Exposed</u>:
 - Intergranular fracture with combination of micron-scale cleavage & grain boundary cracking (revealing dendritic structure – see right).
 - Carbides and γ' precipitates coarsened during exposure and effect is enhanced by larger grains.

Tensile Results – 282

- Base Material Samples:
 - UTS remained relatively constant with a slight increase in YS. 50%, 67% decrease in elongation in CO_2/Ar .
 - Properties largely unchanged other than a drop in ductility.
- Welded Samples:
 - Significant increase in both UTS and YS, while elongation was unaffected by the exposure.
 - Unexposed results were on the lower end of acceptable for Haynes, so perhaps aging effects are present, just not (yet) the dominant contribution to fracture.

	UTS (MPa)	0.2% YS (MPa)	Elongation (%)	Failure Location
282: Unexposed	$\textbf{1,105} \pm \textbf{15}$	728 ± 7	$\textbf{39.9} \pm \textbf{0.4}$	N/A
282: 750°C CO ₂	1,105 ± 9	741 ± 1	20.5 ± 1.0	N/A
Welded 282: Unexposed	867 ± 25	637 ± 11	$\textbf{10.1}\pm1.0$	Fusion Zone
Welded 282: 750°C CO,	966 ± 5	684 ± 2	9.6 ± 0.5	Fusion Zone

282 – Cross-section Analysis

- <u>Surface Analysis</u>: PFZ with a depth of 1-3μm (base) or 2-4μm (fusion)
 - PFZ continued deeper into material surrounding AI/Ti precipitates

- <u>Bulk Analysis</u>: 100nm thick PFZ observed corresponding to grain boundary carbide presence:
 - <u>Base Material</u>: intermittent carbides along grain boundaries
 - <u>Fusion Zone</u>: continual grain boundary carbides and PFZ

282 Base Material – Post-Fracture Analysis

- <u>Unexposed</u>:
 - Intergranular fracture with MVC micron-scale dimples.
 - Carbides and γ' precipitated during standard heat treatment, but still relatively small – results in larger dimples indicating better ductility.
- Exposed:
 - Intergranular fracture with a combination of MVC (similar-size dimples) and sub-micron-scale cleavage.
 - Carbides and γ' precipitates coarsened during exposure from prolonged diffusion of alloying elements.

282 Weld – Post-Fracture Analysis

- <u>Unexposed</u>:
 - Intergranular fracture with combination of MVC micron-scale dimples – and sub-micron-scale cleavage.
 - Carbides and γ' precipitated during post-weld heat treatment, but still relatively small – dimples of size similar to that of base material.
- Exposed:
 - Intergranular fracture with micron-scale cleavage facets noticeably increased in size.
 - Lack of MVC (compared to base material) indicates the fracture mechanism is altered due to the grain boundary system of continuous, coarsened carbides and associated PFZ.

Other Tensile Results – Cu-Coating with Impurities

- Calculations show that at least ~10ppm CO in pure CO₂ lowers the pO₂ to a point that renders Cu inert at 750°C
- Tensile results showed exposure at 750°C for 1,000 hours had a strong detrimental effect on mechanical properties after exposure at 750°C every case except Cu-coated, 50ppm CO.
- Cu-coated 316L exposed to 50ppm CO in RG CO₂ increases UTS, slightly decreases YS and has the effect on elongation:
 - Base Material: slight decrease
 - <u>Welded</u>: no change

Unexposed

Cu-coated

• 316L exposed bare or Cu-coated without CO-doping exhibited severely decreased elongation and deteriorated UTS and YS.

		UTS (MPa)	0.2% YS (MPa)	Elongation (%)
	316L: Unexposed	605 ± 1	297 ± 3	81.2 ± 1.2
	316L: 750°C CO ₂	598 ± 15	220 ± 1	26.8 ± 4.7
	316L: 750°C CO ₂ + 50ppm CO	498 ± 14	291 ± 34	7.5 ± 1.7
25 10	316L Cu: 750°C CO ₂	590 ± 18	233 ± 12	29.1 ± 11.0
Uncoated	316L Cu: 750°C CO ₂ + 50ppm CO	641 ± 4	263 ± 4	68.7 ± 4.2
	316L-316L: Unexposed	541 ± 5	278 ± 2	41.2 ± 0.8
	316L-316L: 750°C CO ₂	586 ± 11	240 ± 13	19.2 ± 0.4
	316L-316L: 750°C CO ₂ + 50ppm CO	538 ± 2	252 ± 1	14.3 ± 0.5
	316L-316L Cu: 750°C CO ₂	581 ± 21	237 ± 6	21.9 ± 5.4
	316L-316L Cu: 750°C CO ₂ + 50ppm CO	651 ± 15	256 ± 4.9	40.1 ± 4.3
a state of the second				

4/11/2018

50ppm CO + RG CO₂

Overview

• <u>Summary</u>:

- Base material and transverse weld samples of 282 and 740H were exposed in RG CO₂ for 1,000 hours at 750°C. Tensile testing was performed at RT.
- <u>740H</u>: base material exhibited only a moderate decrease in mechanical properties; welded samples experienced a large decline in strength and elongation. No PFZ's were observed in either base material or fusion zone.
- <u>282</u>: base material exhibited a decrease in mechanical properties while welded samples showed an increase in strength with no loss in elongation. PFZ's were observed intermittently in base material and continuously in the fusion zone.
- Cu-coating has been shown to be protective against carburization of 316SS in CO-doped CO₂, maintaining high elongation in both base material and welds after 1,000 hours at 750°C.
- Future Work:
 - Currently investigating performance of 316SS and grade 92 F-M steel (and their welds) in CO₂ at lower temperatures, as well as dissimilar welds between them and superalloys 740H and 282.
 - Beginning the evaluation of diffusion bonds after exposure in CO₂.

Backup Slides

4/11/2018

University of Wisconsin–Madison

22

Tensile Results – 740H (additional: heat treatment)

- Base Material Samples:
 - UTS (tensile strength) and YS (yield strength) increased, with only a moderate drop in elongation
 - Effect is consistent with continued aging of material coarsening of γ' precipitates & intergranular carbides
- Welded Samples:
 - Significant drop in UTS and YS, with a large drop in elongation.
 - Effect is magnified by CO₂ exposure

	UTS (MPa)	0.2% YS (MPa)	Elongation (%)	Failure Location
740H: Unexposed	1,111 ± 6	681 ± 3	$\textbf{38} \pm \textbf{1.3}$	N/A
740H: 750°C CO ₂	1,187 ± 2	713 ± 3	26 ± 0.5	N/A
740H: 750°C HT	$\textbf{1,}\textbf{119}\pm\textbf{22}$	673 ± 4	19 ± 2.0	N/A
Welded 740H: Unexposed	$\textbf{1,068} \pm \textbf{22}$	$\textbf{759} \pm \textbf{16}$	$\textbf{26} \pm \textbf{2.6}$	Fusion Zone
Welded 740H: 750°C CO ₂	940 ± 10	638 ± 7	12 ± 2.0	Fusion Zone
Welded 740H: 750°C HT	1,039 ± 4	710 ± 4	16 ± 1.0	Fusion Zone

Tensile Results – 282 (additional: heat treatment)

- Base Material Samples:
 - UTS remained relatively constant with a slight increase in YS. 50%, 67% decrease in elongation in CO_2/Ar .
 - Properties largely unchanged other than a drop in ductility.
- Welded Samples:
 - Significant increase in both UTS and YS, while elongation was unaffected by the exposure.
 - Unexposed results were on the lower end of acceptable for Haynes, so perhaps aging effects are present, just not (yet) the dominant contribution to fracture.
 - HT not performed because samples not procured at time of exposure.

	UTS (MPa)	0.2% YS (MPa)	Elongation (%)	Failure Location
282: Unexposed	$\textbf{1,105} \pm \textbf{15}$	728 ± 7	$\textbf{39.9} \pm \textbf{0.4}$	N/A
282: 750°C CO ₂	1,105 ± 9	741 ± 1	20.5 ± 1.0	N/A
282: 750°C HT	1,052 ± 84	746 ± 18	13.0 ± 3.1	N/A
Welded 282: Unexposed	867 ± 25	$\textbf{637}\pm11$	$\textbf{10.1} \pm 1.0$	Fusion Zone
Welded 282: 750°C CO ₂	966 ± 5	684 ± 2	9.6 ± 0.5	Fusion Zone

Mass Change – 750C, 20MPa, 1,000 hours

4/11/2018

University of Wisconsin–Madison

25

Other Tensile Results – Cu-Coating with Impurities

- Calculations show that at least ~10ppm CO in pure CO₂ lowers the pO₂ to a point that renders Cu inert at 750°C
- Coefficients of thermal expansion is very similar to that of 316SS (Cu – ~18.5µm/m-K; 316 – 17.5µm/m-K)
 - Coating 316 in Cu is a viable option
- Experimentally shown that Cu-coating is very protective of 316L and 316L welds in CO₂ doped with 50ppm CO.
 - Acts primarily as a carbon barrier, causing bulk 316 to only experience heat treatment during exposure in CO₂ environment.
 - Some oxidation still occurs, but environmental carburization is effectively eliminated.

Source: Mahaffey, Jacob Thomas, author. Effect Of Partial Pressure of Oxygen and Activity of Carbon on the Corrosion of High Temperature Alloys in Supercritical Carbon Dioxide Environments. [Madison, Wis.] :[University of Wisconsin--Madison], 2017. Print

Cu-coating:

Source: Schroeder, Anthony, author. Copper as a Corrosion Barrier in Supercritical CO₂ at 750C. [Madison, Wis.] :[University of Wisconsin--Madison], 2017. Print