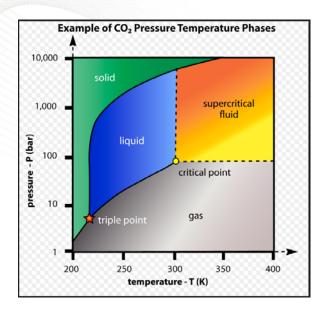

The Effect of Impurities on Oxidation in Supercritical CO₂ at 750°C

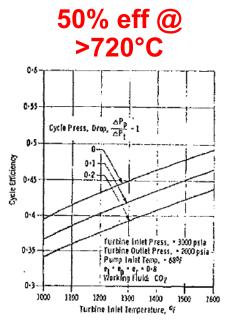
Bruce Pint and James Keiser
Corrosion Science & Technology Group
Materials Science and Technology Division
Oak Ridge National Laboratory

March 2018

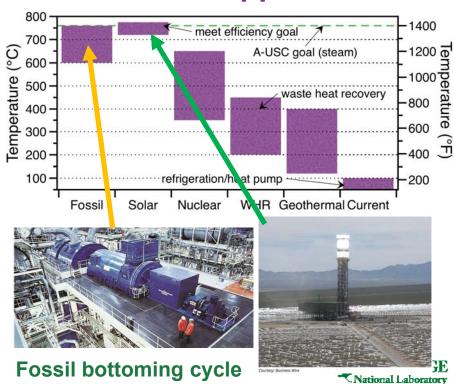

ORNL is managed by UT-Battelle for the US Department of Energy

Acknowledgments

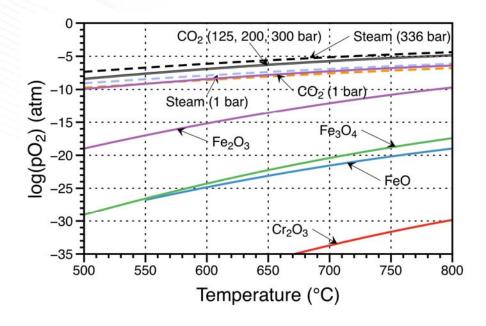
- Funding from DOE Solar Energy Technology Office
 - SunShot Initiative, SuNLaMP award number DE-EE0001556
- Funding from DOE Fossil Energy Program
 - Vito Cedro (NETL) project monitor, Regis Conrad (DOE) program manager
- GDOES, Michael Lance
- TEM, Kinga Unocic
- ORNL technicians
 - Mike Howell
 - Mike Stephens
 - Tracie Lowe (SEM/ImageJ)
 - George Garner
 - Tyson Jordan



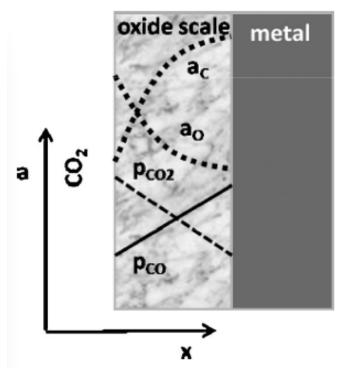
Supercritical CO₂ (sCO₂) has high efficiency potential for several power generation applications


- High density
 - Like a liquid
- Flexible
 - small turbomachinery

Critical Point: 31°C, 74 bar


Feher, 1965

Temperature range estimates for various applications



3 Pint 6th sCO₂ Symp. 2018

Thermodynamics: Oxygen levels similar in steam/CO₂ Concern about high C activity at m-o interface

Factsage calculations

From Young et al. 2011
Also Fujii and Muessner, RIDGE
Laborator

Indirect- vs. direct-fired sCO₂ systems (i.e. closed vs. open)

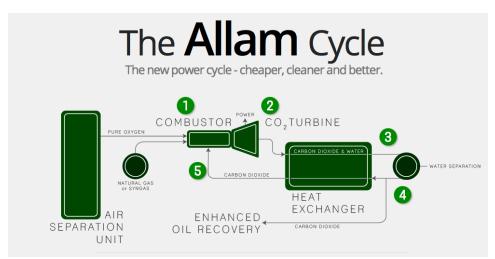
Closed cycle (indirect-fired): "pure" CO₂ 100-300 bar

Recycle

Power
Out

Expander

Compressor


Generator

Generator

Storage

Sc-CO2 Recycle

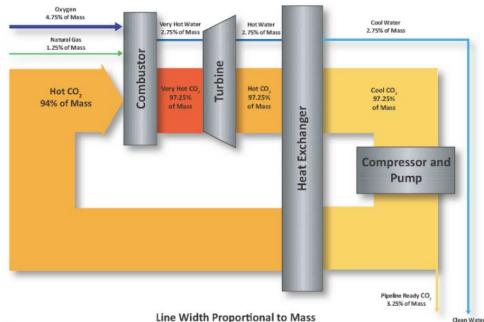
Open cycle (direct-fired): sCO_2 + impurities (O_2 , $H_2O...$)

DOE SunShot funding

DOE Fossil Energy funding

Supercritical CO₂ Allam cycle: first clean fossil energy?

NetPower 25 MWe demo plant (Texas)


Exelon, Toshiba, CB&I, 8Rivers Capital: \$140m

The prototype NET Power plant near Houston, Texas, is testing an emission-free technology

Reported 95+% complete

Material challenges: Combustor: 1150°C (!?!) Turbine exit: 750°C/300 bar

Moving forward with limited compatibility data! As audacious as Eddystone in 1960

2,75% of Mass

Project goal is to study O₂+H₂O effects on sCO₂ compatibility

- Conflicting literature on effect of impurities (U.Wisc., EPRI)
- BUT, we can't easily pump impurities into flowing sCO₂ fluid
- AND can't monitor H₂O or O₂ level at pressure
- 1) 1 bar dry air, $CO_2(99.995\%)$, $CO_2+0.15\%O_2$, $CO_2+10\%H_2O$ (2014-15)
- 2) Compare 1 & 300 bar: industrial vs. research grade CO₂ vs. lab air
 - Test matrix nearly complete, creating a baseline for understanding #5
- 3) Study 1 & 25 bar RG CO₂ vs. CO₂+10%H₂O vs. CO₂+10%H₂O+0.1%SO₂
 - 500 h exposures completed at 700° and 800°C
- 4) Study 1 & 43 bar RG CO₂ at 640°C to compare to gas-cooled reactors
- 5) Constructed rig for 300 bar/750°C testing with 1%O2+0.25%H₂O
- First experiment completed in February
 Pint 6th sCO₂ Symp. 2018

Two sCO₂ projects at ORNL

DOE Fossil Energy

- 750°C/300 bar: 500-h cycles
- Focus on impurity effects for direct-fire
 - Baseline research grade (RG) CO₂
 - New autoclave with controlled O₂+H₂O
- Alloys
 - 310HCbN (HR3C, Fe-base SS)
 - -617
 - -230
 - MarM247 (Al₂O₃-forming superalloy)
 - Haynes 282 (Heat #1)
 - 740H, Special Metals

DOE SunShot (CSP)

- 750°C/300 bar: 500-h cycles
 - Including 750°C/1 bar, 10-h cycles
- Focus on industrial grade (IG) CO₂
 - Indirect fired (closed loop)
- Alloys
 - Sanicro 25 (Fe-base SS)
 - -625
 - 740H, Special Metals
 - Haynes 282 (Heat #2)

Cooperative test matrix:

	Air	RG CO ₂	IG CO ₂	FE: CO ₂ +O ₂ /H ₂ O
1 bar	5,000 h	5,000 h	4,000 h	
300 bar		4,500 h	5,000 h	500 h

CO₂ compatibility evaluated three ways at 700°-800°C

Autoclave: 300 bar sCO₂ 500-h cycles

Correct temperature and pressure

Tube furnace: 1 bar CO₂ 500-h cycles

Same cycle frequency as autoclave

"Keiser" rig:

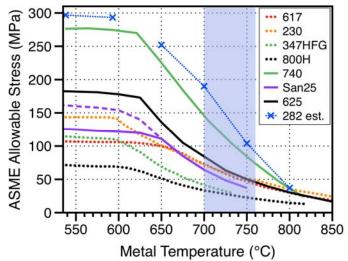
500-h cycles, **1-43 bar CO**₂

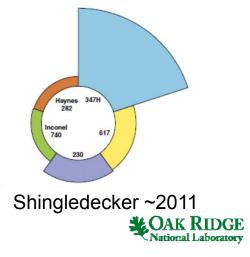
Study impurities at 1-43 bar

Baseline of research grade (RG) CO_2 : ≤ 5 ppm H_2O and ≤ 5 ppm O_2 industrial grade (IG) CO_2 : 18 ± 16 ppm H_2O and ≤ 32 ppm O_2

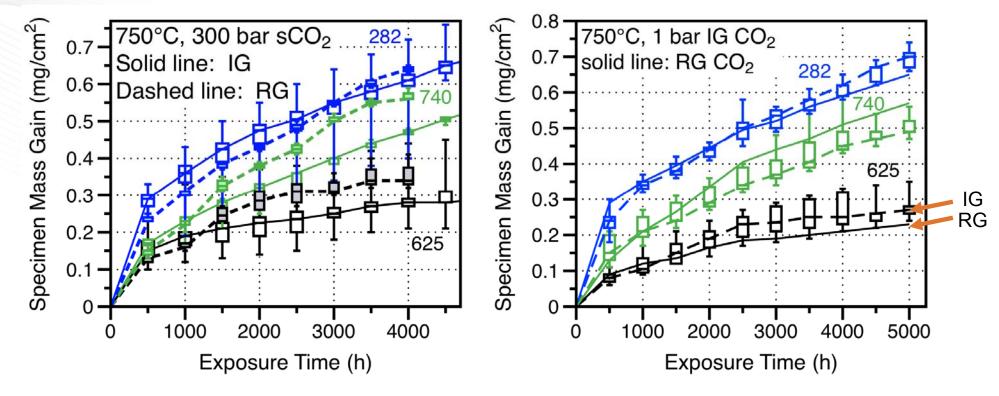
Four alloys selected for SunShot study

Composition analyzed by ICP-OES and combustion analyses


Alloy	Fe	Ni	Cr	ΑI	Со	Мо	Nb	Ti	Mn	Si	Other
Sanicro 25 (Sandvik)	42.6	25.4	22.3	0.03	1.5	0.2	0.5	0.02	0.5	0.2	3.5W, 3.0Cu, 0.2N 0.068 C
Haynes 282 (Haynes Internation		57.1	19.6	1.6	10.6	8.6	<	2.2	0.02		0.059 C (< is less than 0.02)
Inconel 740H (Special Metals)	0.1	49.7	24.5	1.4	20.6	0.3	1.5	1.4	0.3	0.2	0.027 C

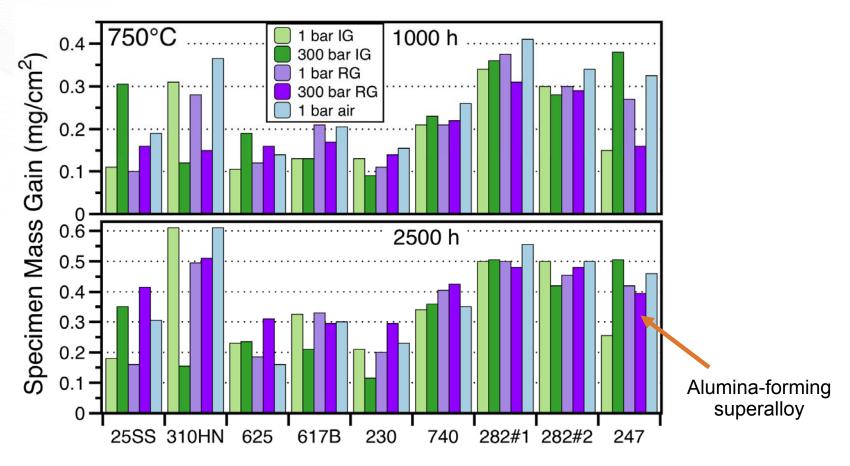

625 4.0 61.0 21.7 0.12 0.1 8.8 3.5 0.2 0.2 0.2 0.06W,0.09Cu,0.016C

(industry selection)


ASME Boiler & Pressure Vessel Code allowables:

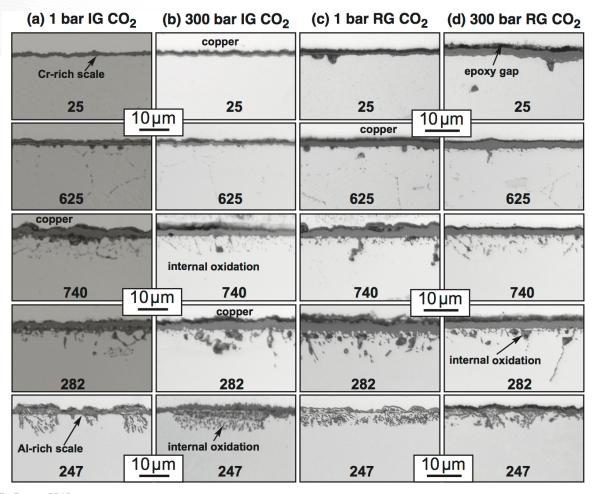
Precipitation-strengthened (γ') Ni-base alloys

No major differences in mass change at 750°C between IG and RG CO₂ at 300 and 1 bar



Line: median values Box: 25-75% Whiskers: min./max.

5-10 specimens per condition


All conditions: not much different from lab. air exposure

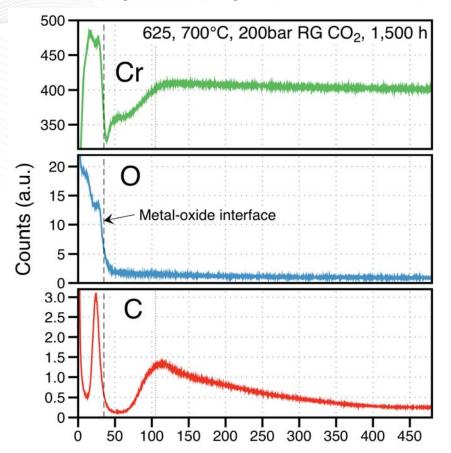
Fe-based alloys show largest variations

Minor differences observed after 2,500 h exposures at 750°C

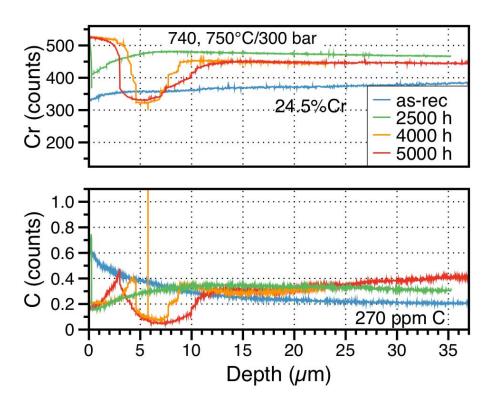
Fe-22Cr-25Ni-4W-3Cu Lower-cost steel

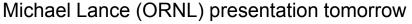
Ni-22Cr-9Mo-4Nb-0.1Al-0.2Ti

Ni-25Cr-20Co-2Nb-1.4Al-1.4Ti

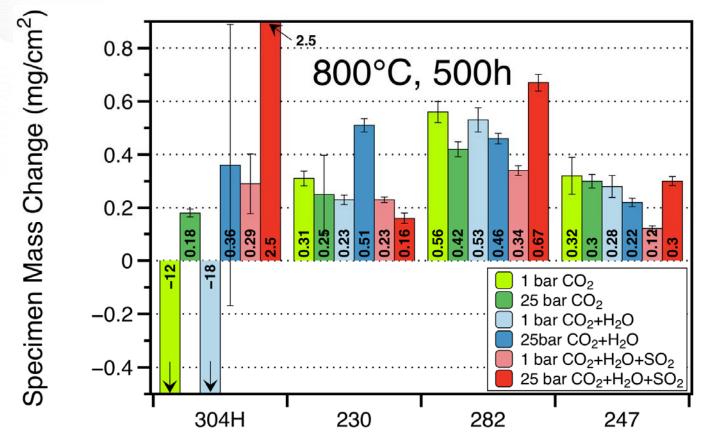

Ni-20Cr-10Co-9Mo-1.6Al-2.2Ti

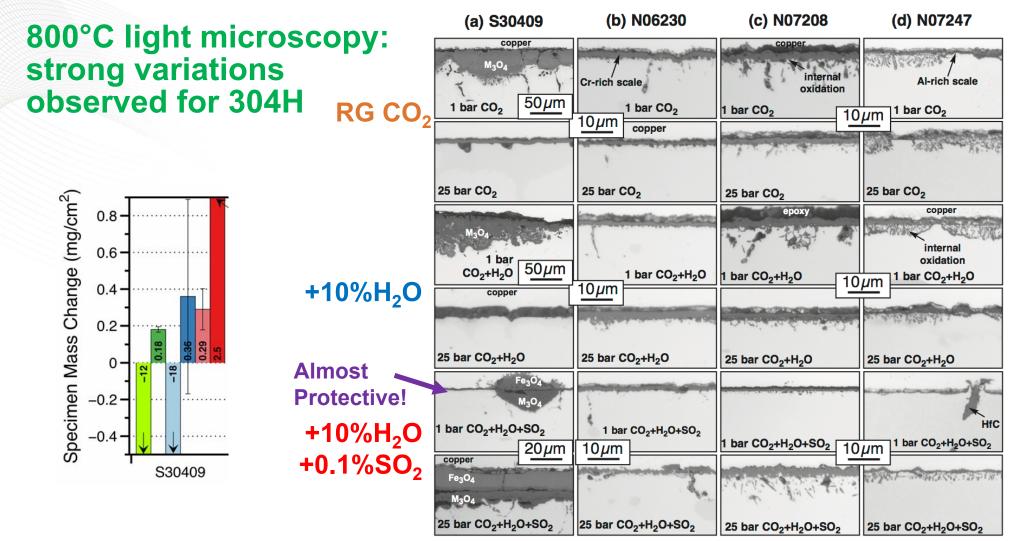
Ni-8Cr-10Co-10W-<u>6Al</u>-1Ti-3Ta-<u>1Hf</u> Al₂O₃-forming superalloy



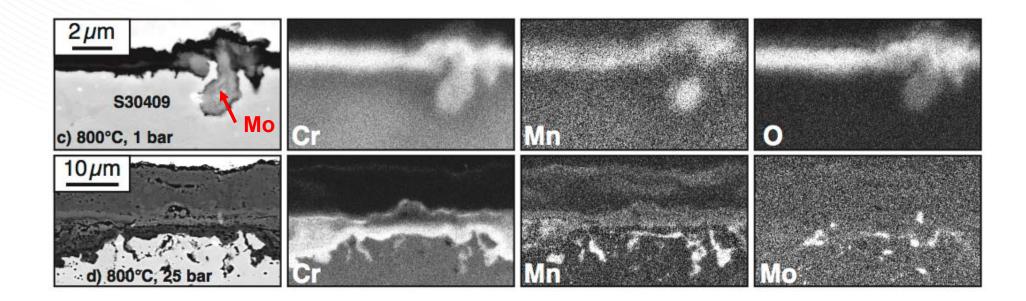

GDOES can detect C ingress (when it occurs)

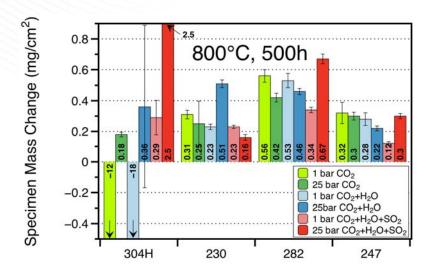
GDOES: glow discharge, optical emission spectroscopy

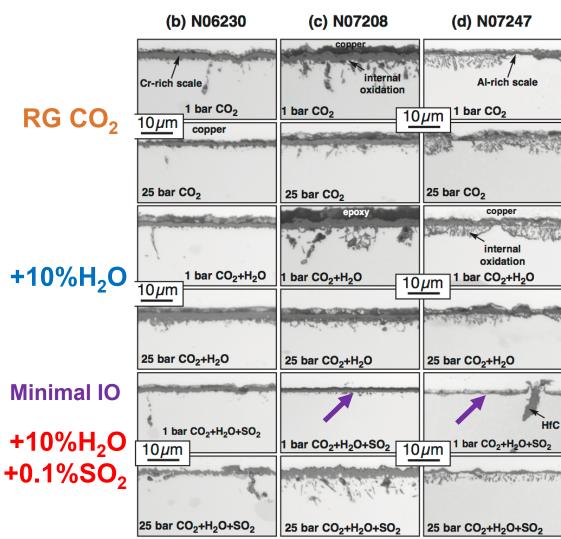

No C detected in 740H at 750°C/300 bar



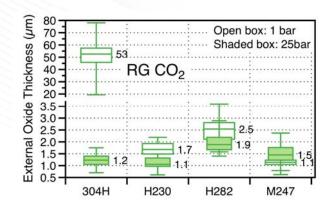
Effect of impurities and pressure (NACE Corrosion 2018) 800°C 500h: strong variations for 304H (steel "canary")

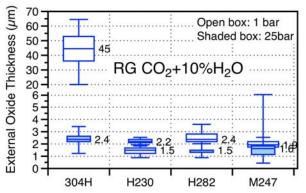


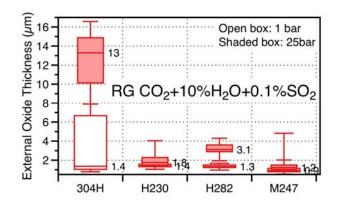

16 Pint 6th sCO₂ Symp. 2018


SEM/EDX 304H: w/SO₂ at 1 bar formed thin protective scale (no good S maps)

800°C light microscopy: variations observed with pressure and SO₂

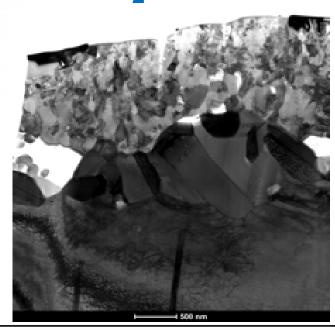


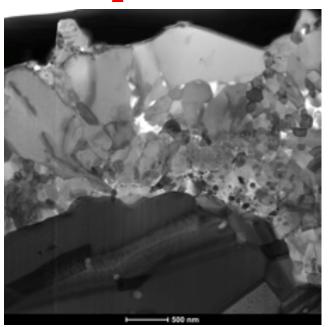



18 Pint 6th sCO₂ Symp. 2018

800°C Scale Quantification: thinner scale at 25 bar (in some cases)

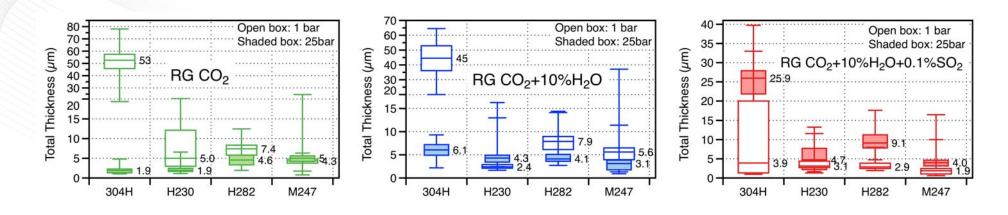
~30 measurements per condition




Does higher P promote a denser (fewer voids/cracks) scale? Except with SO₂: inhibits C/OH effects at 1 bar 25 bar increases p_S, resulting in a negative effect

TEM used to study porosity in scale formed on alloy 625 at 750°C

IG CO₂ 1 bar, 5,000 h IG CO₂ 300 bar, 5,000 h



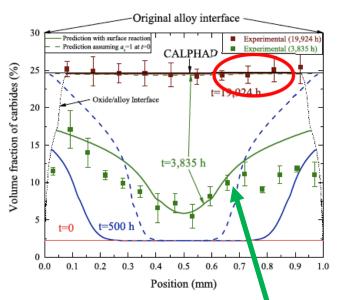
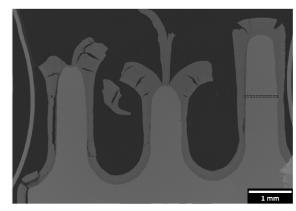
Thin scales observed with less (?) porosity in sCO₂

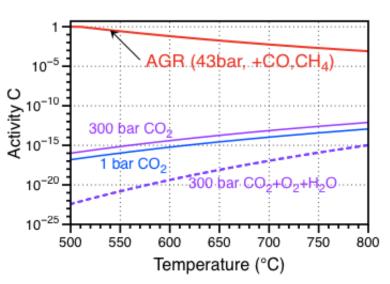
800°C Total Reaction (including internal oxidation): reduced in 25 bar except with 0.1%SO₂

0.1%SO₂ 1 bar: inhibited negative CO₂/H₂O effect, especially for 304H Similar result for Young (CO₂+H₂O) and Quadakkers (H₂O) on Fe-Cr Like SO₂ poisoning of metal dusting

0.1%SO₂ 25 bar: sulfidation attack with 25X higher p_{S2}

Oxford CO₂ lifetime model for UK gas-cooled reactors We need to determine relevance to industrial grade sCO₂


Fig. 8. Predicted profiles of volume fraction of carbides for a 1 min fin exposed to experimental gas conditions at 600 °C at 0, 500 h, 3835 h and 19924 1 in comparison with measurements corresponding to black box marked in Fig. 1(b); sit pulations were conducted by 1D-DiCTra as described in § 3.2 treating migration of ox le/alloy interface and non-steady state carburisation with $\alpha_{\rm HC}=1.2\times10^{-12}$ mol m $^{-1}$ J $^{-1}$ (solid lines) or fixed $a_{\rm C}=1$ at the oxide/alloy interface (dashed lines).

Gong, Young...Reed, Acta Mater. 2017

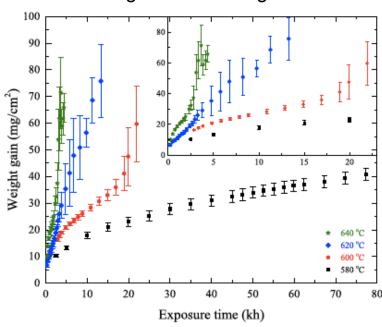
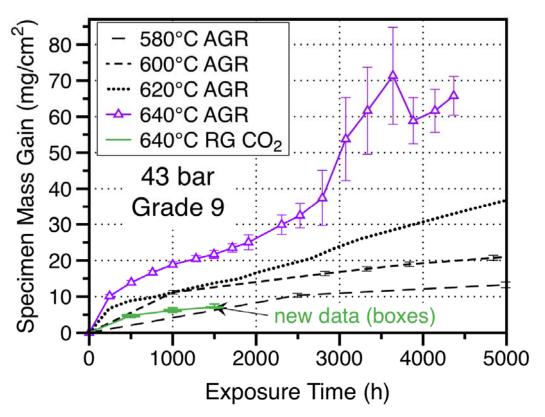
Grade 9 steel fins: Fe-9Cr-1Mo

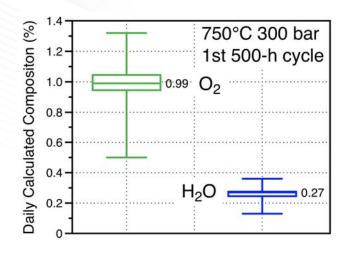
But the 600 psi CO₂ in AGR is very carburizing

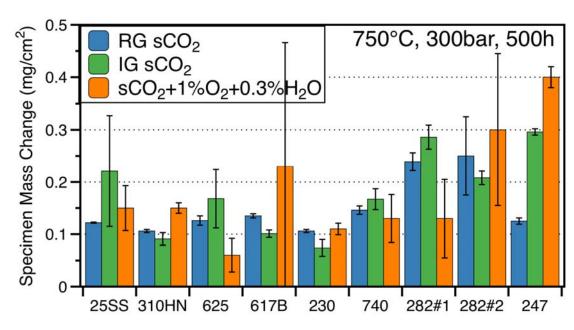
Experimental data (80-200 kh!) 580°-640°C: Cr tied up as carbides

Initial results show less mass gain in RG CO₂

Gong et al. 2017 Figure 3:


Fig. 3. Weight gain changes of experimental samples exposed at $580 \,^{\circ}\text{C}$ (black), $600 \,^{\circ}\text{C}$ (red), $620 \,^{\circ}\text{C}$ (blue) and $640 \,^{\circ}\text{C}$ (green) with gas compositions of $100 \,^{\circ}\text{NP}$ H $_2$, $300 \,^{\circ}\text{NP}$ with $100 \,^{\circ}\text{NP}$ CO, $100 \,^{\circ}\text{NP}$ CO, $100 \,^{\circ}\text{NP}$ CO, $100 \,^{\circ}\text{NP}$ and balance CO $_2$ at gas pressure of $100 \,^{\circ}\text{NP}$ GO psig (42.38 bar); one stand deviation from repeated tests is used to evaluate uncertainties. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)



First 300 bar impurity data obtained New rig completed first cycle in February 2018 Second cycle completed March 27

Goal: 1%O₂+0.25%H₂O (industry suggestion)
Not easy to control at 300 bar

Average of 3 specimens in first experiment

No plans to add SO₂ to autoclave

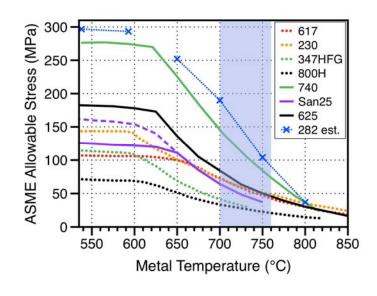
Summary: impurity and pressure effects

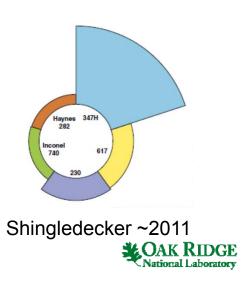
- Want to study impurities in sCO₂ for direct-fired clean energy concept at 750°C
 - Several studies at 1, 25 and 300 bar while waiting for 300 bar sCO₂+H₂O+O₂ autoclave tests
 - Comparison of industrial and research grade CO₂ at 1 and 300 bar
 - Symposium paper
 - Effect of H₂O and 0.1%SO₂ at 1 and 25 bar
 - Corrosion 2018 paper
 - 43 bar test to compare to extensive UK reactor database
 - Initial results at 300 bar sCO₂+1%O₂+0.25%H₂O
- Minor effects comparing IG and RG sCO₂
 - Similar mass gains in laboratory air
- Low SO₂ levels may be acceptable in sCO₂
 - More work needed to understand supercritical conditions
 - Beneficial "poisoning" effects of SO₂ may disappear at high pressure (S level set by coal)
- Current hypotheses
 - Higher P = denser, more protective scale
 - · More characterization of thin scales required
 - SO₂ suppresses C & OH effects (Young & Quadakkers): can we take advantage?

My hero was rich and famous, long before the era of type and hype

"When I want to discover something, I begin by reading up everything that has been done along that line in the past - that's what all these books in the library are for. I see what has been accomplished at great labor and expense in the past. I gather data of many thousands of experiments as a starting point, and then I make thousands more."

- Thomas Alva Edison


Four alloys selected for this study


Composition analyzed by ICP-OES and combustion analyses

Alloy	Fe Ni Cr	Al	Co	Мо	Ti M	n Si	С	Other	
304H	70.4 8.4 18.4		0.1	0.3	1.0	0.3	0.06	0.4Cu,0.07N	steel "canary"
230	1.0 60.0 21.6	0.4	0.2	1.2	0.	5 0.4	0.10	14.6W, 0.02La	solid-solution
Haynes 282	0.2 58.0 19.3	1.5	10.0	8.3	2.2 0.07	0.06	0.06		γ' - strengthened
MarM247	0.1 59.5 8.5	5.7	9.8	0.7	1.0 <	0.03	0.16	9.9W,3.1Ta,1.4Hf	turbomachinery
(< is less than 0.02)								Al ₂ O ₃ -former	

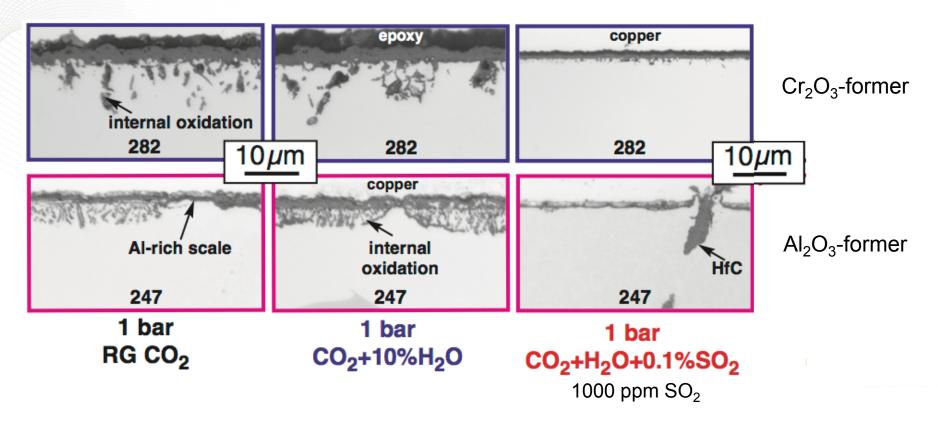
ASME Boiler & Pressure Vessel Code allowables:

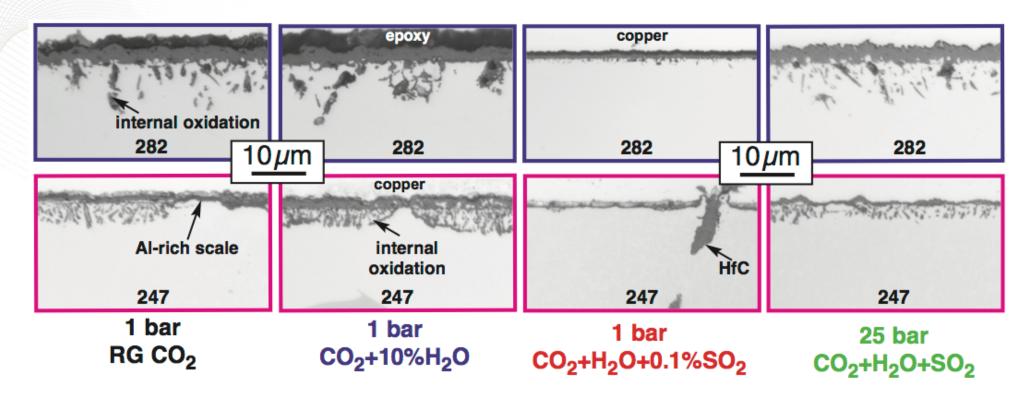
Precipitation-strengthened (γ') Ni-base alloys

Many variables can be considered

- Temperature
 - Cr₂O₃ better C barrier at higher T (?)
 - Steels more T limited than in steam
- Pressure
 - No strong effect of increasing P
- Thermal cycling
 - Stainless steel attacked at 700°-750°C

- Oxygen
 - ORNL & UW different results
- H₂O
 - Negative, especially for see
- CO
 - UW 1%CO results
- SO₂
 - Complicated...





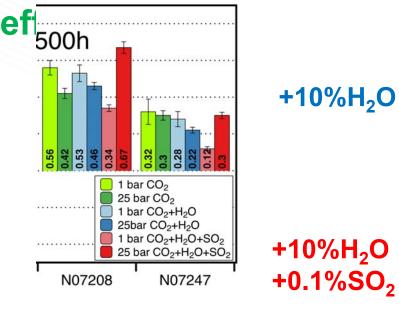
500h at 800°C: SO₂ suppressed internal oxidation at 1 bar

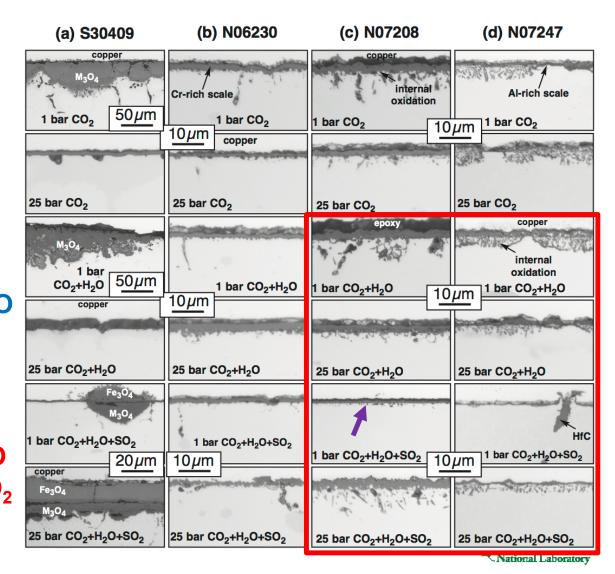
Similar results for SO₂ reported by Young (UNSW) and Quadakkers (Jülich)

500h at 800°C: at 25 bar, 0.1%SO₂ resulted in more attack

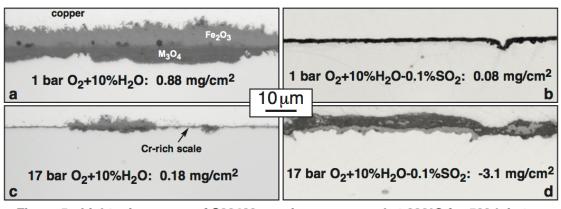
Haynes 282: Ni-20Cr-11Co-9Mo-1.6Al-2.2Ti

MarM247 superalloy: Ni-9Cr-10Co-1Mo-6Al-1Ta-3Ta-1.4Hf


700°C 500h: mainly small mass changes



Average mass change for three specimens: whiskers show a standard deviation

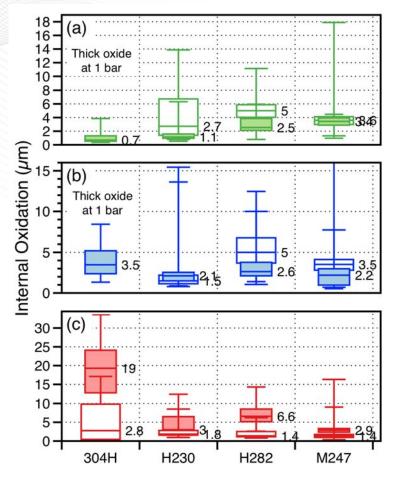

800°C light microscopy:
25 bar: less internal attack
+\$0.: onnosite P

32 Pint 6th sCO₂ Symp. 2018

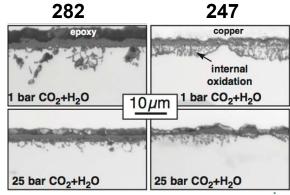
Similar observation with 600°C ORNL study for staged pressurized oxy-combustion (SPOC):

No CO₂ in this study

Figure 5: Light microscopy of S30409 specimens exposed at 600°C for 500 h in two environments and two pressures.


O₂-10%H₂O: reduced attack at 17 bar compared to 1 bar 0.1%SO₂ 1 bar: inhibited negative CO₂/H₂O effect (protective scale)

Similar result for Young (CO₂+H₂O) and Quadakkers (H₂O)


0.1%SO₂ 17 bar: sulfidation attack with 17X higher p_{S2}

800°C internal oxidation: lower at 25 bar except with SO₂

- Hypotheses
 - Higher P = denser scale
 - SO₂ suppresses C and OH effects (Young)
- How affect depth of internal oxidation?
 - Young also reported SiO₂ formation with SO₂
- Is this a lasting benefit?
 - only 500 h exposure

