

Corrosion of Heat Exchanger Alloys in sCO₂ Power Cycles

Steven Kung - EPRI John Shingledecker - EPRI Ian Wright – WrightHT Adrian Sabau - ORNL Brett Tossey – DNV-GL Tap Lolla - EPRI

The 6th International Supercritical CO2 Power Cycles Symposium *March 27, 2018*

Objectives

- Corrosion database
 - determine performance of structural alloys in laboratory high-temperature high-pressure supercritical CO₂ (sCO₂)
- Computational model development
 - build on an existing EPRI Oxide Exfoliation Model
 - Includes laboratory data and configurations pertaining to sCO₂ heat exchangers and recuperators

sCO₂ Power Turbine (676 MW)

Graphics by Aerojet Rocketdyne, used with permission

Materials selection to help DOE achieve Supercritical Transformational Electric Power (STEP) program

Technology challenges for sCO₂ HX

- 4-10X heat duty compared to Rankin Cycle
- HX Expensive: ~40% of total plant cost
- Unique designs
 - small channels
 - large surface areas
- Materials considerations
 - Mechanical:
 - thermal fatigue, creep (thin-wall structures)
 - Manufacturing:
 - brazing/diffusion bonding
 - Corrosion:
 - oxidation, carburization, exfoliation, pluggage, etc.

Realistic sCO₂ conditions simulated in lab for Allam cycle

Survey of industry and literature data

- 700°C likely maximum temperature for heat exchangers
- Evaluation of impurities for near-term 'open/direct-fired cycle' – Allam Cycle
 - H₂O, O₂, N₂, Ar, NO_x, SO_x, HCI
 - thermodynamic and mass-balance calculations for methane (NG) and cooled coal syngas

	Composition (mol%)				
Species	Mothano	Cooled raw	Owigon		
	Wethane	coal syngas	Oxygen		
CH_4	100	1.0			
CO		39.0			
H ₂		28.3			
CO ₂		8.0			
H ₂ O		20.0			
N ₂ +Ar		2.0	0.5		
H2S	2 ppm	0.9			
HCI		0.02			
02			99.5		
LHV	912 BTU/scf	218 BTU/scf			

	-				
Component	Composition (mol%)				
Fuel Stream	Metha	ane	Cooled Raw Coal Syngas		
	Combustor	Turbine	Combustor	Turbine	
	Inlet	Inlet	inlet	Inlet	
CO ₂	95	90	90	85	
H₂O	250 ppm	5.3	250 ppm	5	
N ₂ +Ar	1	1	9	9	
0 ₂	3.8	3.6	1	1	
HCI				20 ppm	
SO ₂				1,000 ppm	
	$\frac{\text{Component}}{\text{Fuel}}$ $\frac{\text{Stream}}{\text{CO}_2}$ $\frac{\text{H}_2\text{O}}{\text{N}_2 + \text{Ar}}$ $\frac{\text{O}_2}{\text{HCl}}$ $\frac{\text{HCl}}{\text{SO}_2}$	ComponentMethalFuel StreamMethalCombustor InletInlet CO_2 95 H_2O 250 ppm N_2 +Ar1 O_2 3.8HClSO_2	ComponentFuel Stream $Meth \rightarrow e$ Combustor InletTurbine InletCO29590H2O250 ppm5.3N2+Ar11O23.83.6HClSO266	ComponentComposition (mol%)Fuel StreamMethaneCooled RawCombustor InletTurbine InletCombustor inletCO2959090H2O250 ppm5.3250 ppmN2+Ar119O23.83.61HClSO2IntelIntel	

3.6 mol% O₂, 5.3 mol% H₂O

Scope of laboratory sCO₂ corrosion study

Alloys

- commercially available
- code approved/industry relevant
- focus on economics

Conditions

- 650-750°C, 200 bar
- $-sCO_2$
 - commercially pure CO₂
 - impure CO₂ (with O₂ + H₂O) to simulate semi-open cycle in NG oxy combustion
- Exposures
 - 2 x 300-h shakedown tests in $CO_2 \pm impurities$, 700°C, 200 bar (Gr91, TP304H, IN740H)
 - 3 x 1,000-h tests in CO₂ + impurities, 650, 700, 750°C, 200 bar (all 7 alloys)
 - 1 x 5,000-h test in CO_2 + impurities, 700°C, 200 bar (all 7 alloys)

Group 1 Ferritic steels: available mass-gain data in CO₂

EPRI supplied samples to all sCO₂ Round Robin testing labs and provided technical support in kind

P = T(°K)[20+logt(hr)]x10⁻³

Pure CO₂

- mass gains similar to those in steam at higher values of Larson-Miller parameter (*P*)

Impure CO₂

- significantly lower mass gains than in pure CO₂ at lower values of P
- Expect similar morphologies in sCO₂ and steam at higher T and/or longer time

 \succ

Group 1 Typical scale morphologies formed on ferritic steels

T91, 64kh at 566°C & 138 bar steam (EPRI Atlas)

50x 100μm As polished

T91, 155kh at 538°C & 17 bar steam (EPRI Atlas)

Group 2 Austenitic stainless steels: available mass-gain data in sCO₂

Group 2 Typical scale morphologies on austenitic stainless steels

Main features of scale in HP steam (Wright & Dooley, 2011)

Fe-Cr spinel (≈28 at% Cr) TP347HFG, 11kh at 670°C & 251 bar steam (EPRI Atlas)

TP347HFG, 500h at 700°C & 200 bar CO₂ (Pint & Keiser, 2014)

Group 3 HT Ni-base alloys (Cr₂O₃ formers): available data in sCO₂

Group 3 Thickness measurements on HT alloys are challenging

• Maximum power of optical microscopy produced marginal resolution

- New SEM/BSE/EDS/EBSD techniques used
 - non-uniform scale clearly evident on 740H surface

IN740 after 3.5kh at 700°C in 'impure' CO₂ at 200 bar (this study)

FIB-STEM can offer better resolution but is time consuming and limited in area coverage

Carburization: Concern for surface hardening and Cr depletion

Current Understanding

- Ferritic steels
 - UK research (1970s) identified breakaway oxidation phenomenon under AGR conditions
- Austenitic steels
 - C pick-up observed only in initial stages, or when duplex scales present (or after exfoliation)
- Cr₂O₃ scales are known to be excellent barriers to C ingress
 - confirmed by recent observations at 550-750°C, 200 bar (Pint, ORNL)
- High total Ni+Cr content in alloys is beneficial
- High-Cr Ni-based (HT) alloys are likely to resist carburization
 - maybe equally applicable to solid solution and precipitation-strengthened Ni-based alloys

Ferritic steels showed different degrees of surface hardening after 1000h at 700°C in CO₂ -3.6% O₂-5.3% H₂O at 200 bar

RESEARCH INSTITUTE

Overall observations on carburization (this study)

Ferritic steels

—expect continuous C uptake until alloy saturation

—oxidizing impurities retard hardening

Conventional austenitic steel

- TP304H showed initial hardening (after 300h) in sCO₂ with oxidizing impurities
 - after 1,000h, possibly small increase in overall alloy hardness, but no gradient (consistent with UK AGR results)

Reliable Cr₂O₃-forming alloys :

—high-Cr austenitic (HR3C): hardening of surface to 150-200 μm

—Ni-base alloys: no evidence of hardening (as expected)

Modeling:

Thickness-based oxide growth kinetics for sCO₂ corrosion

Focus on three potential failure modes:

- 1. Reduction of flow area in channels from oxide growth
- 2. Cr depletion due to oxide formation
- 3. Time to scale failure (oxide exfoliation/blockage)

Alloy	T°C	A (µm²/h)	Q (kJ/mole)	R ²	Source
Gr91	650-750	2.3 x 10 ¹⁹	374	0.88	This work
VM12	650, 750	4.1 x 10 ⁷	162	1*	This work
Crofer 22H	650-750	1.2	14**	1*	This work
TP304H	650-750	7.6 x 10 ⁵	148	0.99	This work
HR3C	650-750	NA	NA	—	—
IN617	650-750	NA	NA		—
IN740	650-750	NA	NA		—
IN740	650-800	1.4 x 10 ⁵	166	0.97	17 bar steam
310HCbN	650-800	2.3 x 10 ²	112	0.98	17 bar steam

Arrhenius constants used to *modify EPRI Oxide Exfoliation Model*

*Two data points only, at 650 and 750°C

**Very unusual T-dependence, possibly associated with a change in the type of scale formed due to rapidly increasing Cr diffusion at the higher temperatures.

Oxide growth in sCO₂ predicted by modified EPRI Oxide Exfoliation Model (isothermal)

Growth of scale thickness along a compact HX channel

- Local T along a channel dictates the rate of scale growth
 - hottest end will attain d_{crit} first
 - length of channel (for a given ΔT) influences blockage considerations
- Critical oxide thickness (d_{crit}) is dictated by considerations of:
 - acceptable reduction in flow area (i.e., pressure drop)
 - exhaustion of Cr reservoir (breakaway oxidation)
 - scale exfoliation/failure and channel blockage

Failure mode 1: Reduction in flow area from oxide growth (RFA_{ox})

- Favored designs of sCO₂ recuperators employ small flow channels
 - $-\Delta P$ is thus a critical consideration

- Rate of oxide growth drives RFA_{ox}
- If RFA_{ox} values of ≥ 5% cannot be tolerated, the resulting d_{crit} is very small

Oxide thicknesses 1-10 μ m may also impact heat transfer even if scale remains intact

- shown for laminar flow
 - lower ΔP for turbulent flow
- RFA of 2-5% typically considered acceptable

Tube ID (mm)	Critical Oxide Thickness, <i>d_{crit}</i> (µm)				
RFA _{ox} :	1%	2%	5%		
0.3	0.75	1.5	3.8		
0.6	1.5	3.0	7.6		
0.9	2.3	4.5	11.4		

Failure mode 1: Reduction in flow area by oxide growth occurs rapidly

					0.	
Alloy	T°C	0.3 mm Channel ID			0.6 mm	0.9 mm
	RFA _{ox} :	1%	2%	5%	5%	5%
Grade 91	600	290	1,170	7,390	29,560	66,390
TP304H	650	88	357	2,259	9,034	20,292
N740H	700	1,638	6,641	42,060	168,240	377,870

In terms of lifetime:

- 0.3 mm channels are problematic for all alloys
- 1% RFA_{ox} problematic (except for IN740H with 0.9 mm channel ID)

Failure mode 2: Depletion of Cr reservoir leading to breakaway oxidation

Temperature, °C

NOTE *C*_b values estimated from general knowledge.

- Model approach validated for conditions where there is no depletion gradient in Cr
 - for alumina-forming ferritic steels at $T > 1000^{\circ}C$
- Where a Cr-depletion gradient exists, critical Cr content (C_b) may be significantly reduced
 - if, for instance, Cr gradient results in 1.25x assumed C_b , calculated lives would be reduced by a factor of 40-70%
- New modeling based on this scenario (Duan, et al. 2016) should provide guidance
- Overall, it appears that this scenario is likely to be life-limiting only for TP304H

Alloy	T°C	Lifetime, kh				
Wall thic	kness, mm:	0.2	0.3	0.5	1.2	
TP304H	650	19	43	120	692	
HR3C	700	739	1,663	4,619	26,605	
IN740H	700	1,070	2,407	6,686	38,509	

Failure mode 3:

Time to reach critical scale strain for exfoliation

Assumptions:

- Unit is shut down every 3 months
 - $\Delta T (\Delta P)$ in shut down provides stress peak/scale failure and exfoliation
 - tubes cleaned out
- Length of accumulated exfoliant = 10x channel diameter
- Blockage (RFA_B) is a discrete event
 - RFA_{ox} is a function of time

Alloy	T°C	Lifetime, kh				
Channel length, m:		0.5		1.0		
Channel diam, mm:		0.3	0.6	0.3	0.6	
ТР304Н	550-700	33.9	>>40	30.8	>40	
	600-750	13.2	17.5	12.2	15.6	
IN740H	600-750	22.4	>40	18.7	28.6	

'Fate of debris' for thermally grown oxides is not understood for small-channel HX

Summary

- First project to address oxidation in direct-fired sCO₂ Allam cycles (with impurities)
- Oxide growth rates in sCO₂
 - appear consistent with (and similar to) those in HP steam
 - possibly slower when oxidizing impurities are present in sCO_2
 - no systematic effect from pressure
- Scale morphologies
 - nominally follow expectations for steam oxidation, with some potential influences from C
- Surface hardening
 - identified in Gr 91 and VM12; more pronounced in 'pure' sCO₂
 - also found in TP304H & HR3C
 - none apparent in Ni-base alloys
- Existing EPRI Oxide Exfoliation Model modified
- Impact of three lifetime-limiting scenarios from scale growth in sCO₂ evaluated
 - Degree of concern: RFA > exfoliation/blockage > Cr depletion
 - Model available for corrosion researchers and system designers to use in component design

Acknowledgements

This work was sponsored by the DOE Office of Fossil Energy Cross-Cutting Materials Research Program under contract **DE-FE0024120**

NETL project manager: Vito Cedro

Together...Shaping the Future of Electricity

Group 4 HT Ni-base alloys (Al₂O₃ formers): available data in sCO₂

