

Thar has a history of successfully designing & commercializing Green Processes using

Thar Energy, LLC © 2017 All Rights Reserved

Huge Interest: Over 275 attendees, 15+ countries

 United States 	•US DOE	 Thar 	 U of Wisconsin
 China 	•SWRI	•GE	 Xi'an Jiaotong Univ
•UK	•SNL	 Peregrine 	 Univ of Central FI
 Germany 	•ORNL	●Hanwha	 Univ of Stuttgart
 Netherlands 	•EPRI	 Net Power 	 Univ of Seville
Italy	•GTI	 Echogen 	 Oregon State Univ
 Spain 	•SMDERI	 Dresser-Rand 	 Georgia Inst of Tech
 Korea 	•KIER	•VPE	 Embry-Riddle Aero
●India		 Heatric 	 Delfts University
 Saudi Arabia 		 CompRex 	 Indian Institute of Sc
•Japan		 Brayton 	 Penn State Univ
		 Mohawk 	 Tohuku University
		 Nooter-Erikson 	

Why sCO₂ Brayton Cycle Power Systems

- Higher Efficiency
- Smaller Package enables it to be factory made
 - > HX, expanders and pumps are smaller
 - > A 5 MW system can fit into a 40 foot container
 - Smaller Package allows for easy installation
- Fuel Flexibility
 - > Natural Gas, Biomass, and Coal
- Zero Emissions: Oxy-combustion
- Air Cooled: No water requirement

sCO₂ Brayton Cycle Applications

Natural Gas Genset 10-200 kW

Biomass Thermal Power 10-5000 kW

Gas Turbines Cement Plants **Steel Plants** Ships 1-25 MW

Natural Gas Power Plant 50-500 MW

Oxy Combustion

200-500 MW

ATharEnergy

One MW DOE sCO₂ Pilot Loop SwRI, Thar Energy, GE

Flameless Pressurized Oxy-Combustion Pilot **Plant Planning** (SwRI, ITEA for DOE NETL)

Traditional Combustion with Flame Front

Flameless Pressurized Combustion

High Inlet Temperature Combustor for Direct Fired Supercritical Oxy-Combustion (SwRI, Thar for DOE NETL)

- Currently \$100M+ in sCO₂ R&D projects •
- 25 active sCO₂ related projects •
- Topics include: •
 - Component design and testing
 - Oxyfuel combustion
 - Cycle optimization
 - Pilot plants
 - Gas physical properties
- 1 MW Sunshot loop operational ٠
- 10 MW STEP loop in design phase ٠

sCO₂ Compressor-Expander Configurations Offer Clean Energy Solutions

Integrally Geared Expander Configuration

Integrally Geared Compressor Configuration

✓ Flexibility

Offers:

 \checkmark zero emissions

Integrated Turbomachinery for:

Recompression Brayton Cycle, Recuperated Cycle, sCO₂ Expander Only, sCO₂ Compressor Only, sCO₂ Re-compressor only,

Allows:

Optimal stage rotational speeds Variable flow control

Integrally Geared Re-Compressor Configuration

Direct Fired Oxy-Combustion Gas Turbines offer Clean Efficient Power Potential

Net Power

NET POWER'S VISION FOR SCO₂ BRAYTON CYCLES

NET Power's 50MWth sCO2 Demonstration Plant in La Porte, TX

TIMELINE:

- TODAY: 50MWTH DEMONSTRATION PLANT IN STARTUP AND EARLY TESTING
- LATE 2018: FREEZE COMMERCIAL DESIGNS AND SECURE AN MOU/ORDER FOR FIRST 300MWE COMMERCIAL SCALE PLANT
- MID-2021: FIRST COMMERCIAL PLANT DELIVERY

USING THE NATURAL GAS-FIRED ALLAM CYCLE, NET POWER'S GOAL IS TO:

- ACHIEVE EFFICIENCIES AND CAPITAL COSTS THAT ARE COMPETITIVE WITH COMBINED CYCLE...
- ENABLING NET POWER PLANTS TO COMPETE HEAD-TO-HEAD WITH INCUMBENT TECHNOLOGIES ON SALES OF ELECTRICITY ALONE...
- WHICH WILL MEAN THAT CARBON DIOXIDE CAN BE CAPTURED AT PIPELINE QUALITY AND PRESSURE FOR NO ADDED COST.

BY DOING THIS, NET POWER HOPES TO ENABLE THE WORLD TO MEET ALL OF ITS CLIMATE TARGETS WITHOUT HAVING TO PAY MORE FOR ELECTRICITY. Quoting Andrew Maxson of EPRI

TharEnergy

EPRI thinks that sCO2 power cycles – both indirect and direct-fired – have potential as higher efficiency cycles.

These cycles still have to show their reliability and viability in the field and especially they must prove to be cost competitive.

Lower cost than any comparable steam-Rankine applications), preferably by a significant margin – at least 20% in terms of cost of electricity, if not more, to overcome the worries of risk of using a new system.

- Cost, Cost and Cost
- \$/kW is the driver, and not just efficiency
- Competition
 - Small Scale
 - Diesel Gensets are \$600-700/kW
 - Natural Gas Gensets are \$700-\$800/kW
 - Large Scale
 - Traditional Steam Rankine Cycle
- SCO2 system has to be in the \$1000/kW range
- There is going to be competition from so many places
 - US, Europe, Korea, China, India, etc...

Recuperated Recompression Cycle

150 Gamma Drive Pittsburgh, PA 15238 www.tharenergyllc.com

Inconel 740H Hot Air–sCO₂ HX

Major Components

- 2 Recuperators
- 1 Primary Heater
- 1 Condensor
- 2 Compressors
- 1 Expander

Thar Energy, LLC © 2017 All Rights Reserved

ATharEnergy

Thar Energy, LLC © 2017 All Rights Reserved

Major Components

	\$/kWe	
Compressor	125	
Recompressor	75	
HTR	125	
LTR	50	
Cooler	25	
Heater	100	
Turbine	100	
Generator	50	
Tubing, valves, etc	75	
Controls	75	
Skid	25	
Labor, Overheads	75	
	900	

ATharEnergy

Multiple By-Products

Multi-Tens of Billions Market Opportunity Only way to achieve it: Drive down Cost \$/kW

Thar Energy, LLC © 2017 | All Rights Reserved

Welcome to Pittsburgh

Lalit Chordia, Ph.D Thar

Nature and Parks Museums Universities Churches

Hippest localities in the country E. Liberty and Lawrenceville

Our 75,000 Sq. Ft Facility in Pittsburgh

Mt. Washington Duquesne Incline Phipps Conservatory Carnegie Museum PNC Park Heinz Field