

The future of sCO₂ POWER CYCLE TECHNOLOGY - EU Perspective

Claudio Spadacini CEO EXERGY SPA

6th International Supercritical CO₂ Power Cycles Symposium 28th March 2018

A JUMP IN THE PAST

In Europe, Italy,

Politecnico of Milan

A JUMP IN THE PAST

- Back in early 60s, at the Politecnico of Milan, Prof. G. Angelino was already very active on sCO₂ Power Cycles. In 1965 he filed a patent on supercritical power cycles using CO₂ as working fluid. The patent for his idea was granted
- 30 YEARS LATER I discussed my Thesis on real gas cycles using organic fluid and CO₂ with Prof. Angelino as my Supervisor.

*.... here dates back my first interest in the subject of supercrital CO*₂ *cycles.*

AND THEN?

53 YEARS IN THE MIDDLE

1960s

In these years the investigations of Prof. Angelino and Others on the sCO_2 Power Cycles were driven by the interest in <u>Nuclear Power</u>

1970s 2000s

During the following 4 decades the **'Oil&Gas Energy Era**' dominated the market. There was not enough interest to develop a new challenging technology as the sCO_2 technology.

(source: theoildrum.com)

AND THEN?

53 YEARS IN THE MIDDLE

2000s - On

R&D activities on sCO_2 worldwide have been revitalized, with a focus on WHR, Nuclear and Oxy-Combustion and some pilot projects utilizing sCO_2 power cycles came to life.

WHY?

 CO_2

The **climate change issue**, the increasing rate of **global carbon dioxide emissions** force governments and global Oil & Gas industry to focus attention on new ways for more efficient, **sustainable** and **cleaner power generation**. The sCO₂ power cycle technology can contribute to the solution of the problem. Features like **High Efficiency, Compactness** and **reduced Capex** are the potential drivers to make sCO₂ power cycle attractive for many applications.

sCO₂ PROJECT IN EUROPE

- In Europe there are much less sCO₂ cycles/engines R&D and Develpment project then in USA and Asia;
- There are a number of small project in the Universities and some project with Industrial players financed by the program Horizon 2020 (like sCO₂-FLEX), but not big enuogh to build a pilot plant with reasonable scale;

A NEW GLOBAL ENERGY SCENARIO

"We had the carbon era, we had the oil era, now we are experiencing a new era, the <u>Era of Energy DIVERSIFICATION</u>"

> Fatih Birol, Executive director of the IEA

Change in World Primary Energy Demand

(source: World Energy Outlook 2017 - IEA)

Coal decling, **Oil** decreasing, **Natural gas** and **renewables** will lead the way of the future energy scenario

Natural gas and **renewables** will represent most of the annual capacity addition to the energy system in the coming years

(source: World Energy Outlook 2017)

Nuclear faces significant decline with only China growing and overtaking the US as leader

- In the new era of energy diversification there will not be a dominant source for power generation
- Technology needs to adapt and be more flexible to different sources and conditions
- Flexibility calls for the use of smaller, more efficient and less costly power systems

2020 2012 2012 200 W 206 billion USD 42% Share of Capacity Additions 39% Share of Capacity Additions 39% Share of Capacity Additions 2000 47 GW 30 billion USD 21% Share of Capacity Additions

(source: "The rise of Distributed Power" by General Electric Company)

Hence the rise in the last decades of distributed power systems

Trends in distributed power installations and investments

sCO2 POWER CYCLE FUTURE SCENARIO

In this context (diversification and more distributed power) sCO_2 power cycle have to take the challenge to be the:

- more flexible;
- more competitive (higher efficiency, lower capex, lower LCOE);
- > **Cleaner** (externally fired with more emissions control)

To play a significant role for small-medium power plant, required in the market primarily for Natural Gas, but also for biomass, waste, CSP, Flaring, WHR, etc...

Besides that, another opportunity are the **Oxy-Combustion** sCO_2 cycles with the challenge to make the Carbon Capture and Sequestration technology competitive in term of **LCOE**, and become a solution for utility scale new / substitution plants.

sco2 power cycle future scenario

13

sCO2 POWER CYCLE FUTURE SCENARIO

In coherence with this scenario sCO_2 technology will have more chances for

success in the near future for some applications and not for others.

- WHR (gas turbines)
- Externally fired sCO₂ Engines, with natural gas & other fossil fuel, biomass, CSP, flaring, etc..

Geothermal

- Utility scale application for fossil fuel with CCS (i.e. Oxycombustion)
- Nuclear

sCO2 POWER CYCLE FUTURE DEVELOPMENTS

In accordance with the context previously described, in our view next challenge for sCO₂ power cycle technology will be to respond to the market need for:

An externally fired machine for power generation via a sCO2 Closed Brayton Cycle

- In the range 10-100 MWe
- **↑ 45-50+%** η_e
- Capex \downarrow 0,9\$/kW_e
- Compact and flexible and Clean

sCO2 POWER CYCLE FUTURE DEVELOPMENTS

WHAT IS THE WINNING STRATEGY FOR THIS CHALLENGE?

<mark>is the</mark> answer

- While components vendors will keep their attention on the R&D for single components of the cycle
- 2. sCO2 Engine Manufactures shouldfocus on the machine as a whole
- follow the evolutionary path of other technologies in the power market (i.e. Gas turbine) from complex plants to single compact machines.

sco2 power cycle future developments

EXAMPLE – EVOLUTION OF MACHINE TECHNOLOGY

Drawing of first gas turbine on the market: a set of separate components

A modern gas turbine : all components are integrated in a single compact machine

Source: Rolls Royce

Fig. 3. Diagram of the simplest form of combustion turbine plant. With reaction type gas turbine and axial

h. Safety valve

j. Starting motor

i. Generator

- compressor for oil fuel, and with excess air cooling. a. Axial compressor d. Burner
 - a. Axial compressor d. Burner b. Combustion chamber e. Cooling-air jacket
 - c. Combustion nozzle
 - Compussion nozzle
- f. Gas-turbine blading g. Gas turbine

Source: Alstom - The world first Industrial Gas Turbine set at Neuchâtel (1939)

sCO2 POWER CYCLE FUTURE DEVELOPMENTS

EXAMPLE – EVOLUTION OF sCO2 TECHNOLOGY

sCO₂ power cycle system is made up by different separated machine

The technological evolution should be able to integrate all the cycle components in a single designed machine

sCO2 POWER CYCLE FUTURE DEVELOPMENTS

WHAT ARE THE CONDITIONS TO SUCCEED IN APPLYING THIS APPROACH?

 Flexible approach and vision, with Multidisciplinary know how and comprehensive technical and organizational skills inside the company

In-House competencies and resources are crucial for quick and flexible approach to product development

CONCLUSIONS

IF

- Focus on the applications with more chance for success
- Apply the right approach to the development of the machine, having inhouse know how and skills;
- More investment will be available to the sCO₂ power cycle development

CONCLUSIONS

even in this Energy Diversification Era , sCO₂ Power Cycle could become the technology replacing **steam, internal combustion engines** and **small combined cycle gas turbines** finding application in:

- fossil distributed power systems
- biomass and waste
- > naval transport power systems

22

GREEN POWER THROUGH INNOVATION

THANK YOU !

Contact me at:

HEAD OFFICE

Via degli Agresti, 6 40123 Bologna (BO) ITALY OPERATING HEADQUARTERS Via Santa Rita, 14 21057 Olgiate Olona (VA) ITALY Tel +39 0331 18 17 711

EXERGY-ORC.COM INFO@EXERGY.IT