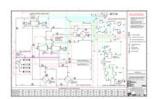
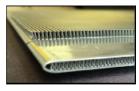
GTI **STEP** forward on sCO₂ Power

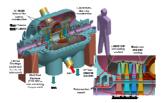
<u>Supercritical Transformational Electric Power project</u>

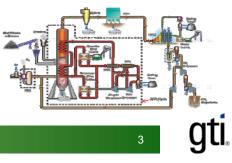
Vann Bush Managing Director, Energy Supply & Conversion 27 March 2018

Working With Industry and Governments to Increase Access to Abundant, Affordable, and Acceptable Energy


FOR A BETTER ENVIRONMENT AND A BETTER ECONOMY SUPPLY CONVERSION DELIVERY UTILIZATION 360 World-class piloting TECHNICAL/ CONSULTING TRAINING PROGRAM **RESEARCH &** EMPLOYEES ANALYTICAL DEVELOPMENT MANAGEMENT facilities headquartered in Chicago area


GTI © 2018


gti


GTI Completed sCO₂ Projects

- 1. Applicability and system performance/benefit studies for large-scale nuclear (LMR), solar (CSP) and fossil applications
- 2. Oxy-fired natural gas combustor and turbo-expander for combustion product gas with recycled CO_2 reference plant study of performance and LCOE assessment (direct-fired and cooled-turbine)
- 3. Costs and technology roadmap for recuperators
- Advanced turbomachinery for indirect (T<760C) and direct (T>760C) sCO₂ power cycles
- 5. Oxy-fired pressurized fluidized bed combustor reference plant study of performance and LCOE (indirect-fired, un-cooled turbine)

Versatile Technology - Broad Applicability

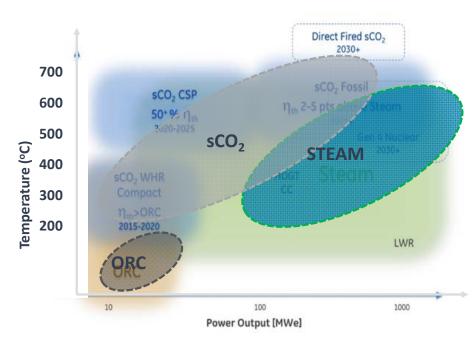
Concentrating Solar

Nuclear

Fossil Fuel

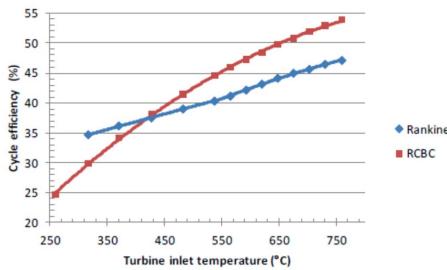
Ship-board Propulsion

Geothermal



Waste Heat Recovery

Promise of sCO₂ Power Cycles


- Heat-to-power conversion cycles with supercritical CO₂ working fluid promise several advantages
 - Heat source flexibility
 - Higher efficiencies
 - Compact turbo-machinery
 - Economic scalability
 - Lower emissions & water consumption
 - Facilitates and economizes low-carbon power production

Challenges of Advanced sCO₂ Power Cycles

- Technology and process development to confirm advantages
 - Materials: corrosion, creep, fatigue
 - Turbomachinery: life, aero performance, seals
 - Recuperators: design, size, fabrication, durability
 - Cycle operability: startup, transients, load following

Source: NETL

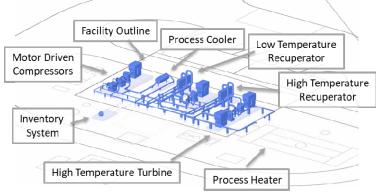
gti.

Supercritical Transformational Electric Power (STEP) Program

- **Scope:** Design, construct, commission, and operate a 10 MWe sCO₂ Pilot Plant Test Facility
 - **Goal:** Advance state of the art for high temperature sCO₂ power cycle performance from Proof of Concept (TRL3) to System Prototype validated in an operational system (TRL7)
- Team:Gas Technology Institute (GTI)Southwest Research Institute® (SwRI®)General Electric Global Research (GE-GR)
- **Schedule:** Three budget phases over six years (2016-2022)
 - Cost: \$113MM Total / \$80MM Federal Funding

Building a flexible platform for long-term use to validate component performance, quantify cycle efficiency, and study plant operability in an integrated, grid-connected system.

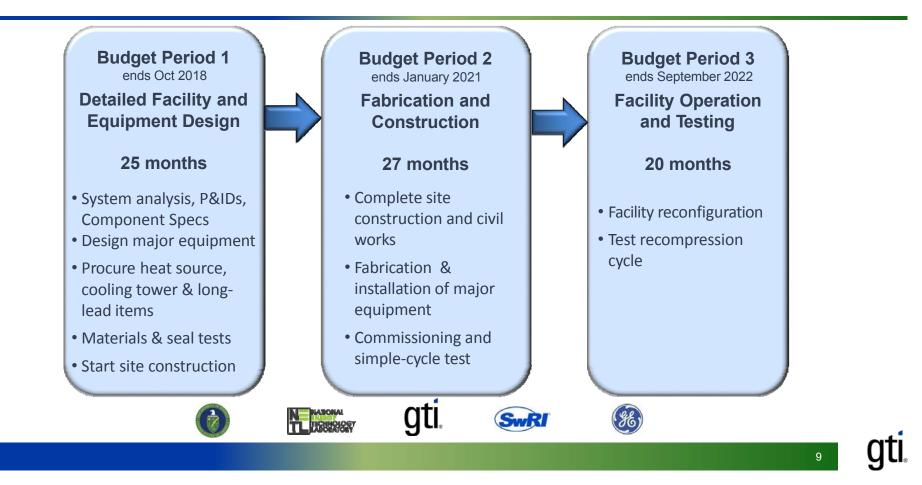
STEP Program Objectives

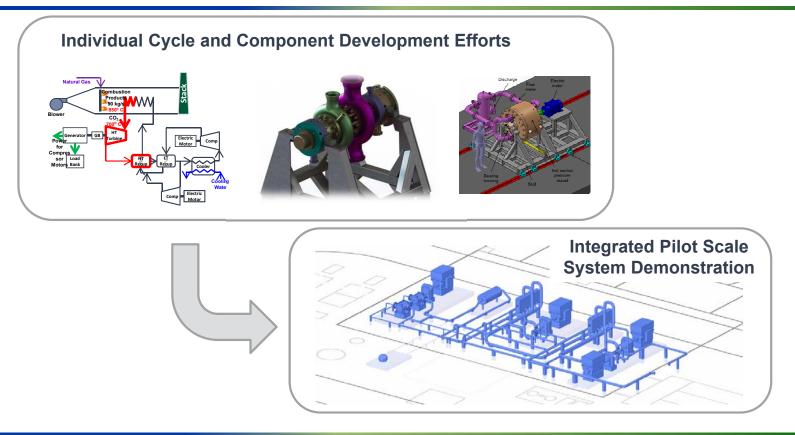

Demonstrate pathway to RCBC cycle efficiency > 50%

Demonstrate cycle operability up to 700°C turbine inlet temperature and 10 MWe net power generation

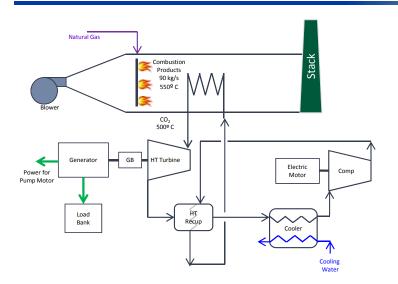
Quantify performance benefits:

- 2-5% point net plant efficiency improvement
- 3-4% reduction in LCOE
- Reduced emissions, fuel, and water usage

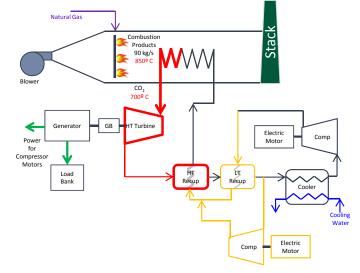

Reconfigurable facility to accommodate future testing


Pilot Site: SwRI in San Antonio, TX

STEP Project Plan


Transitioning from Component and Cycle Design to Integrated System Demonstration

gti


10

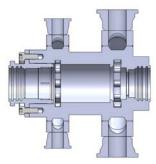
Flexible Test Facility Designed with Alternate Indirect Cycle Configurations

Simple Cycle

- Shortest time to initial data
- Controls & safety
- Component performance
- Steady & transient cycle data

Recompression Cycle

- Inventory management
- Starting transients
- Parallel compressor control
- SOA component efficiencies
- Cycle efficiency > 50%

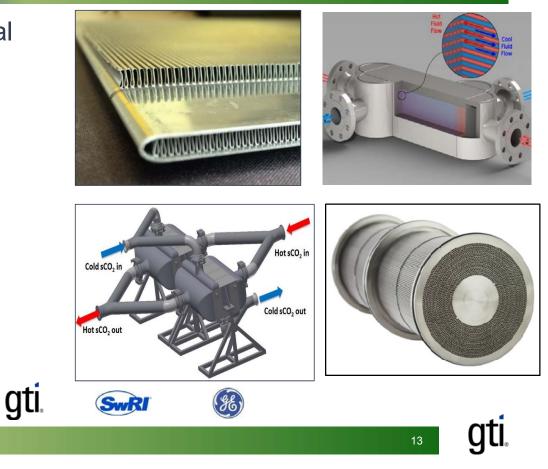

11

STEP Current Status: Turbine

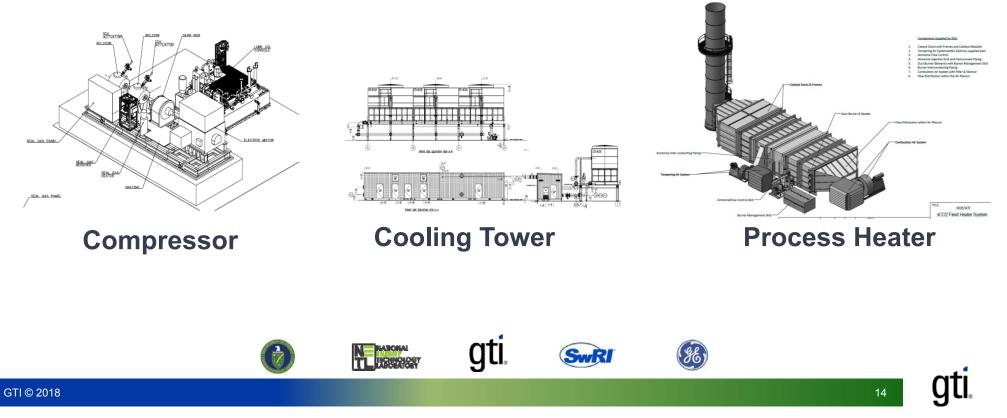
- > Turbine improvements over SunShot
 - Increased casing and rotor life, 100,000 hrs vs 20,000 hrs
 - Increase bolt retightening schedule to 30,000 hr vs 1,000 hrs
 - Design for couplings on both shaft ends
 - Improved aero performance with increased volute flow area

gti.

- > Current design activities
 - Torsional train dynamics
 - Rotor flowpath preliminary design
 - Flowpath mechanical and aeromechanical integrity



STEP Current Status: Recuperators

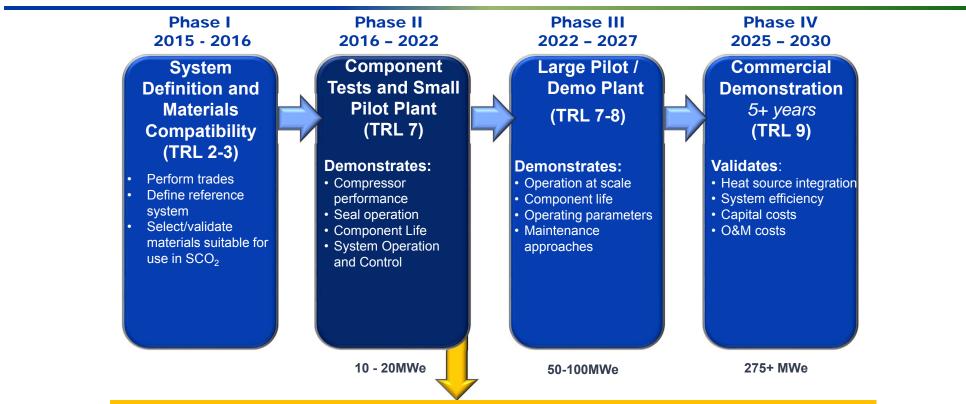

- > Evaluating replies to RFQ from several suppliers
- > Alternate compact technologies
 - heat transfer surface vs. volume
- > STEP is a significant scale-up
- > Evaluating performance vs. cost and plant integration

N RABORAL TL DESCRIPTION

STEP Current Status: Other Major Components

> Finalizing selections

STEP Current Status: Facility and Site


General arrangement defined Existing Cooling Tower Building > EA ready for public review Drainage Load Banks Building design being finalized LEGEND **Process Heater** RELIMINARY IS FOR REVIEW Main Building > Major BOP hardware specifications in progress Reserved Soace Stanley Cors Lavdown and ➢ Ground breaking in 2018 Honton Storage SwRI Main Campus, San Anto Turbine Recuperator 1 Turbine 2 Recuperator 2 Coole Main Co nventory Managemen gti

Summary

- \succ sCO₂ power cycles promise substantial cost and emissions benefits
- > Applicable to coal, natural gas, solar, geothermal, nuclear, waste heat
- STEP 10MW_e program well underway groundbreaking at SwRI site this year
- Strong team in place and executing smoothly
- Additional partners welcome

sCO₂ Step-by-Step Commercialization

Early product off-ramp for 10-20 MWe distributed power generation systems

gti

Turning Raw Technology into Practical Solutions

www.gastechnology.org | vann.bush@gastechnology

gti

18

Turning Raw Technology into Practical Solutions

www.gastechnology.org | vann.bush@gastechnology.org