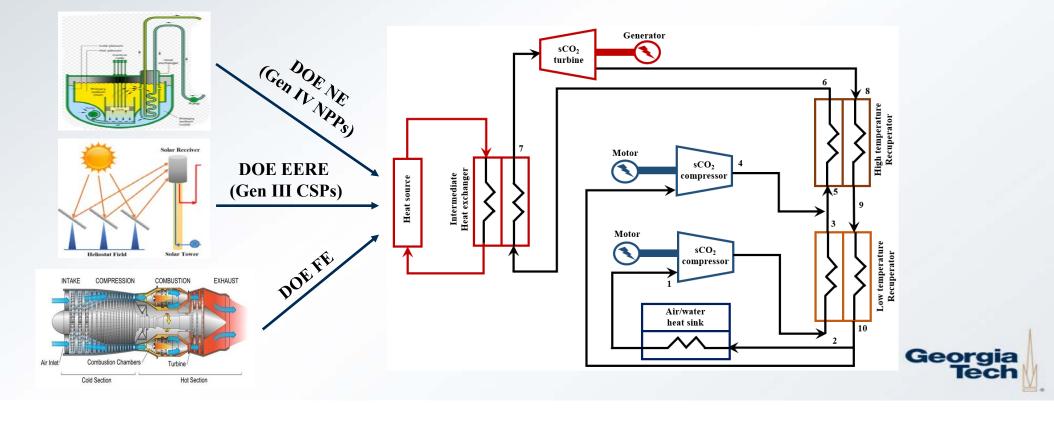


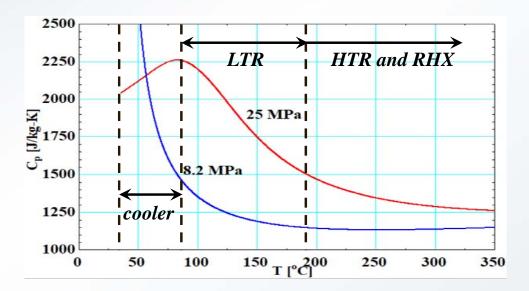
Thermal-hydraulic performance of discontinuous fin heat exchanger geometries using Supercritical CO₂ as the working fluid

Sandeep R Pidaparti, Devesh Ranjan, Mark Anderson

The 6th International Symposium – Supercritical CO₂ power cycles
Pittsburgh, PA
March 27-29, 2018


Outline

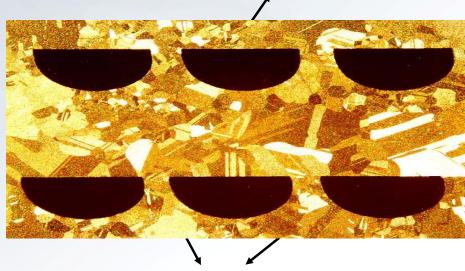
- Introduction
- Experimental test facility
- Data analysis procedure
- · Results and discussion
 - Correlation development and comparison with existing geometries
- Summary/Conclusions


Supercritical CO₂ Power Cycles – Overview

- U.S. Department of Energy (DOE) initiative for clean and efficient energy conversion.
- Supercritical CO₂ power cycles are gaining increasing attention compared to the widely-used steam Rankine cycles and gas Brayton cycles.

Supercritical CO₂ Power Cycles – Overview

- Moderate critical pressure (7.38 MPa) and critical temperature ~ 31.1°C is near ambient temperature (Dry air cooling feasible)
- Density resembles that of liquid near the critical point
 - Reduced compression work, larger W_{net}
- Higher energy density compared to H₂O and He
 - Allows Compact turbomachinery to achieve same power
- Specific heat mismatch between high and low pressure sides requires two stage recuperation and split compression to increase recuperation effectiveness (> $2/3^{rd}$ of heat is recuperated)

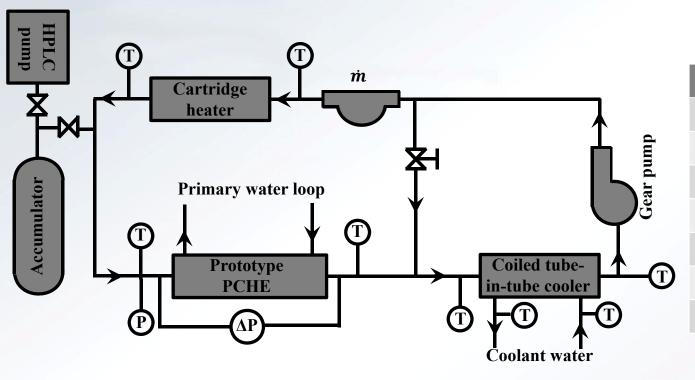


Printed Circuit heat exchangers for sCO₂ power cycles

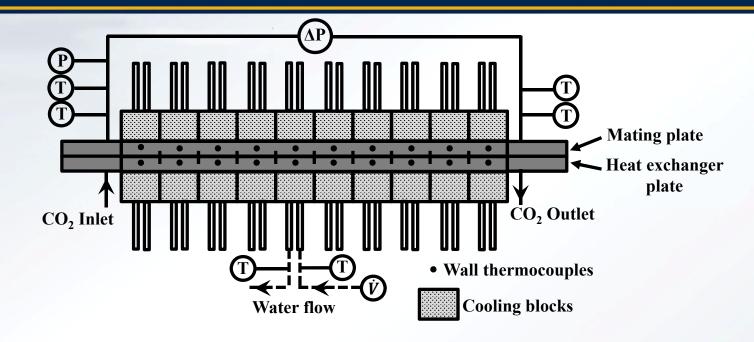
Source: Heatric

- Channels/patterns are photo chemically etched on to a plate.
- Semicircular channels are convenient to etch because of the inherent process etching corner radius

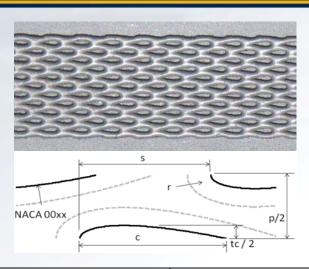
- Multiple plates are diffusion bonded by applying pressure at high temperature (50-80% of the melting temperature) to form monolithic core
- Promotes grain growth at the interface (No foreign material as in the case of brazing)


Chemical etching and diffusion bonding

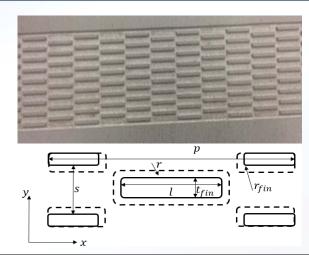
- Typical size of heat exchanger core, 1.5 x 0.6 x 0.6 [m]
- Multiple cores are welded together to form a heat exchanger without headers


Core Welding

Experimental facility


Component	Capabilities
HPLC pump	Up to ~ 10,000 psi
Circulation pump	0.6 - 7.0 GPM
Coriolis flow meter	0-0.27 Kg/sec
Pre-heater	Maximum 5.5 KW _{th}
Water chiller	Maximum 25 KW _{th}
Pre-cooler	Double tube HEX
Accumulator	~ 13 Gallons (49 L)

Test section



- RTD probes are used to measure inlet and outlet temperature to the Heat exchanger
- Wall temperatures are measured using 20 type K-thermocouples (10 on each plate)
- Volumetric flow rate of water to each cooling block measured using turbine type flowmeters
- Inlet and outlet temperatures of water to each cooling block are measured using type K-thermocouples
- Inlet pressure measured using gage pressure transmitter and pressure drop measured using differential pressure transmitter.

Heat exchanger test plates

	4mmNACA0020		
	Design	Measured	
Chord width, c (mm)	4	3.566	
Thickness/Chord length	0.2	0.202	
Fillet radius, r (mm)	0	0.795	
Channel depth, h (mm)	0.95	0.685	
Axial pitch, s (mm)	3.5	3.466	
Lateral pitch, p (mm)	3.6	3.657	
Plate thickness, t (mm)	6.3		
Number of Rows (N_x)	14	14	
Airfoils per Row (N_y)	(6	
Hydraulic diameter, D_h (mm)	1.205	1.112	
Unit cell heat transfer area, A_s (mm ²)	30.18	24.94	
Cross-sectional area, A_c (mm ²)	15.96	12.07	
Measured Relative roughness	7.259e-3		

	Design	Measured
Fin thickness, t_{fin} (mm)	0.65	0.65
Fillet radius, r (mm)	0	0.47
Fillet radius, r_{fin} (mm)	0	0.18
Fin depth, h (mm)	0.65	0.65
Fin spacing, s (mm)	1.95	1.95
Fin length, <i>l</i> (mm)	9.025 7.69	
Lateral pitch, p (mm)	18.05	17.68
Plate thickness, <i>t</i> (mm)	6.3	
Number of unit cells along length (N_x)	28	
Number of unit cells per row (N_y)	9	
Hydraulic diameter, D_h (mm)	0.9502	0.9973
Unit cell heat transfer area, A_s (mm ²)	82.01	91.133
Cross-sectional area, A_c (mm ²)	11.43	11.567
Measured Relative roughness	7.4e-3	

Test matrix

Data recorded for 500s @ 1Hz after reaching steady state

Range of experimental parameters				
Inlet pressure (bar)	75, 81, 102			
CO ₂ inlet temperature (°C)	50 – 200°C (In increments of 10°C) 20 – 50°C (In increments of 5°C)			
CO_2 flowrate, \dot{m}_{CO_2} (kg/h)	8.8 - 28.8 kg/h (In increments of 2.9 kg/h)			
Water inlet temperature (°C)	$10 - 20^{\circ}$ C			
Water flow rate (GPM)	0.05 - 0.1			

Uncertainty of measured variables				
\dot{m}_{CO_2} (kg/s) $\pm 1\%$ of measured value				
$CO_2 T_{in}, T_{out}$ ± 0.15 °C				
P_{in}	±0.025% of full scale (0-3000 psig)			
ΔP	$\pm 0.025\%$ of full scale (0-15 psid)			
\dot{V}_{dot} (GPM)	$\pm 1.5\%$ of measured value			
ΔT_{water}	±0.15°C			
T_{wall}	±0.15°C			

Data analysis procedure – Frictional Pressure drop

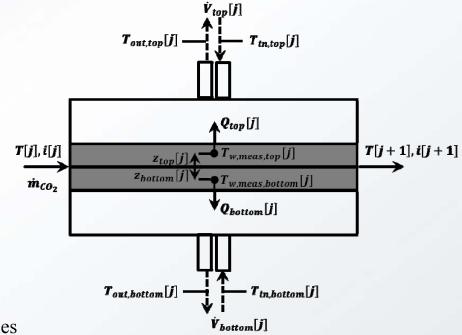
$$\Delta P_{measured} = \Delta P_{friction} + \Delta P_{local} + \Delta P_{accel} + \Delta P_{gravity}$$

$$\Delta P_{accel} = G^2 \left(\frac{1}{\rho_{out}} - \frac{1}{\rho_{in}} \right)$$

$$\Delta P_{gravity} = \pm g \left(\frac{i_{out}\rho_{out} + i_{in}\rho_{in}}{i_{out} + i_{in}} \right) Lsin\theta$$

$$\Delta P_{local} = \left[1 - \frac{A_c}{A_{manifold}} \right]^2 \rho_{out} \frac{v_{out}^2}{2} + 0.5 \left[1 - \frac{A_c}{A_{manifold}} \right]^{0.75} \rho_{in} \frac{v_{in}^2}{2}$$

$$\Delta P_{expansion}$$


$$\Delta P_{contraction}$$

Data analysis procedure - Test section Heat duty

Test section heat duty

$$\begin{split} Q_{CO_2} &= \dot{m}_{CO_2}(i_{in} - i_{out}) \\ Q_{top}[j] &= \dot{V}_{top}[j] \rho|_{T_{avg}} C_p|_{T_{avg}} \big(T_{out,top}[j] - T_{in,top}[j]\big) \\ Q_{bottom}[j] &= \dot{V}_{bottom}[j] \rho|_{T_{avg}} C_p|_{T_{avg}} \big(T_{out,bottom}[j] - T_{in,bottom}[j]\big) \\ Q_{water} &= \sum_{j=1}^{10} Q_{top}[j] + \sum_{j=1}^{10} Q_{bottom}[j] \\ \bar{Q} &= 0.5(Q_{CO_2} + Q_{water}) \end{split}$$

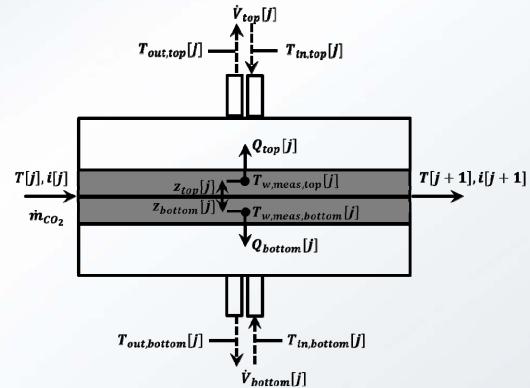
• Maximum %Difference between water side and CO₂ side heat duties is <10% when the CO₂ inlet/outlet temperature is near the pseudocritical temperature

Data analysis procedure – Local bulk and wall temperatures

Bulk fluid temperature

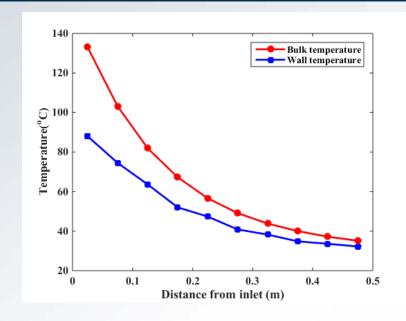
$$i[j+1] = i[j] - \frac{Q_{top}[j] + Q_{bottom}[j]}{m_{CO_2}}$$
$$i_b[j] = 0.5(i[j] + i[j+1])$$

Assuming linear pressure drop, $P_b[j] = P_{in} - \frac{\Delta P}{L}x[j]$


$$T_b[j] = f(i_b[j], P_b[j])$$

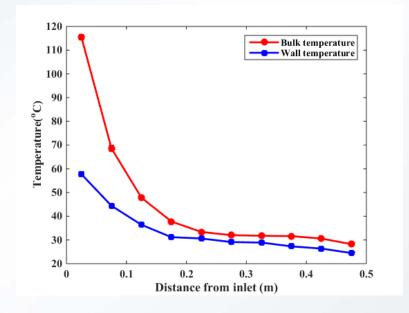
Wall temperature

$$T_{w,calc,top}[j] = T_{w,meas,top}[j] + \frac{Q_{top}[j].z_{top}[j]}{k_{ss316}.A_{cb}}$$


$$T_{w,calc,bottom}[j] = T_{w,meas,bottom}[j] + \frac{Q_{bottom}[j].z_{bottom}[j]}{k_{ss316}.A_{cb}}$$

$$T_w[j] = 0.5(T_{w,calc,top}[j] + T_{w,calc,bottom}[j])$$

Data analysis procedure – Average bulk and wall temperatures



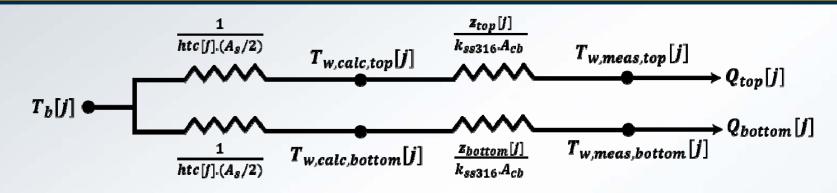
$$\overline{T_b} = \frac{1}{L} \int_0^L T_b(x) . dx = \frac{1}{N} \sum_{j=1}^N T_b[j]$$

$$\bar{\rho}_b = \frac{1}{L} \int_0^L \rho(T_b) . dx$$

$$\bar{\mu}_b = \frac{1}{L} \int_0^L \mu(T_b) . dx$$

$$\overline{Pr_b} = \frac{1}{L} \int_0^L Pr(T_b) . dx$$

$$\overline{T_w} = \frac{1}{L} \int_0^L T_w(x) . \, dx = \frac{1}{N} \sum_{j=1}^N T_b[j]$$


$$\bar{\rho}_w = \frac{1}{L} \int_0^L \rho(T_w) . \, dx$$

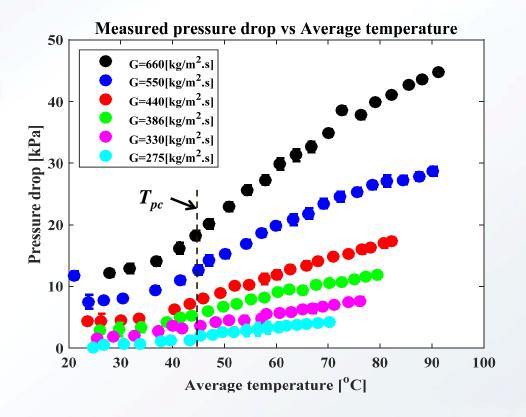
$$\bar{\mu}_w = \frac{1}{L} \int_0^L \mu(T_w) . \, dx$$

$$\overline{Pr_w} = \frac{1}{L} \int_0^L Pr(T_w) . \, dx$$

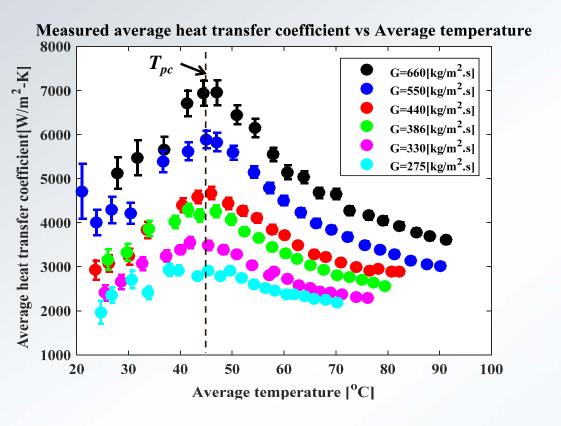
Data analysis procedure – Local and average heat transfer coefficients

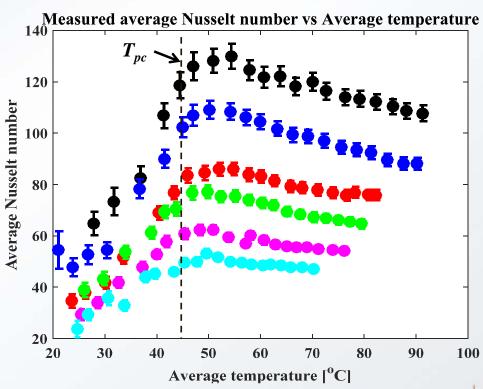
$$htc[j] = \frac{Q_{top}[j] + Q_{bottom}[j]}{A_{s} \cdot (T_{b}[j] - T_{w}[j])}$$

$$Nu[j] = \frac{htc[j].D_h}{k_h}$$


$$\overline{htc} = \frac{\overline{Q}}{N.A_s(\overline{T}_b - \overline{T}_w)}$$

$$\overline{Nu} = \overline{htc}.\frac{D_h}{\overline{k}_b}$$




Pressure drop data – Example

- Test condition
 - Operating pressure 10.2 MPa
 - 4mm NACA0020 airfoil Offset fin test plate
- Pressure drop decreases rapidly in the vicinity of pseudo-critical point → Due to increase in viscosity and density leading to lower velocities and Re for constant mass flux
- Pressure drop increases with increase in mass flux (and Re)

Heat transfer data – Example

Friction factor – Correlation development

• Calculated frictional pressure drop for each case can be written as,

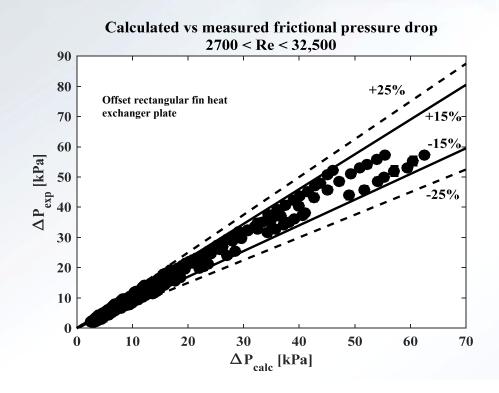
$$\Delta P_{calc} = \sum_{i=1}^{N} 2 \left(\frac{L}{N.D_h} \right) \frac{G^2}{\rho_i} f_i$$

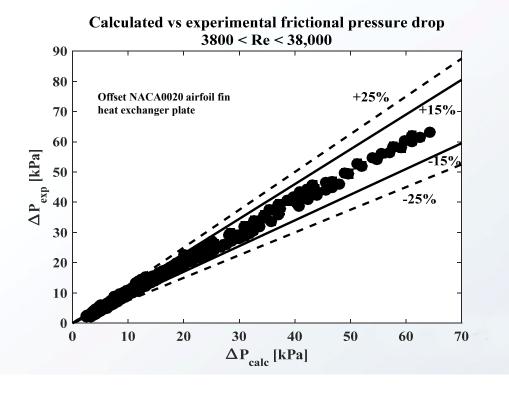
Where, ρ_i and f_i represent local density and friction factor. Assuming a friction factor of the form,

$$f_i = aRe_i^b$$

Coefficients a and b are found out using least squares curve fitting approach

$$\sum_{i=1}^{N_{expt}} (\Delta P_{calc}^i - \Delta P_{exp}^i) \rightarrow minimum$$


$$Error = \frac{\Delta P_{calc} - \Delta P_{exp}}{\Delta P_{exp}}.100$$


Heat exchanger plate	a	b
Offset rectangular fin plate	0.0276	-0.002
Offset NACA0020 airfoil fin plate	0.0077	0.1201

Friction factor – Correlation development

Heat exchanger plate	MAD Error	σ Error	Points with Error <15%	Points with Error <25%
Offset rectangular fin plate	11.2%	13.7%	80%	91.7%
Offset NACA0020 airfoil fin plate	8.1%	11%	88.6%	94.7%

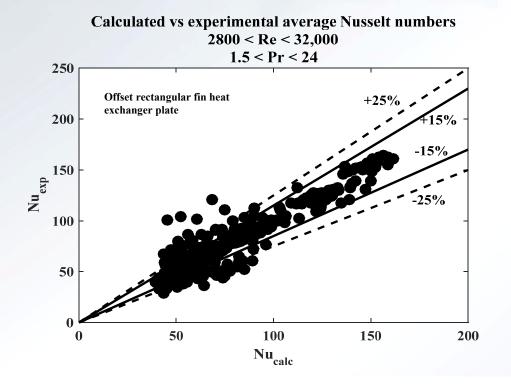
Nusselt number – Correlation development

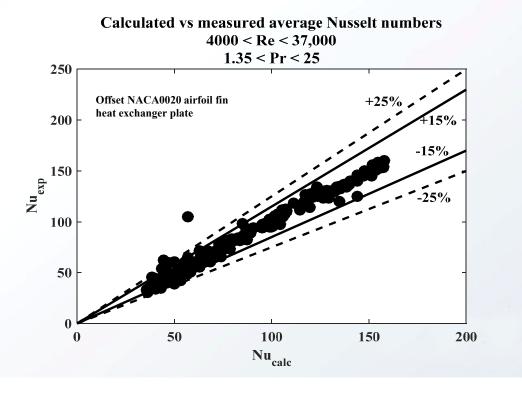
• Calculated average Nusselt number for each case can be written as the Dittus-Boelter form $(a\overline{Re}^b\overline{Pr}^c)$ along with additional wall to bulk property ratios to take into account non-linear variation of properties with temperature.

$$Nu_{calc} = a\overline{Re}^{b}\overline{Pr}^{c} \left(\frac{\overline{\rho_{b}}}{\overline{\rho_{w}}}\right)^{d} \left(\frac{\overline{C_{pb}}}{\overline{C_{p}}}\right)^{e}$$

Where,
$$\overline{C_p} = \frac{\overline{i_w} - \overline{i_b}}{\overline{T_w} - \overline{T_b}}$$

Coefficients a through e are found out using least squares curve fitting approach,

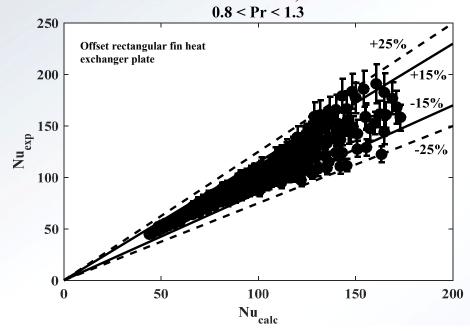

$$\sum_{i=1}^{N_{expt}} (Nu_{calc}^{i} - Nu_{exp}^{i}) \rightarrow minimum$$


$$Error = \frac{Nu_{calc} - Nu_{exp}}{Nu_{exp}}.100$$

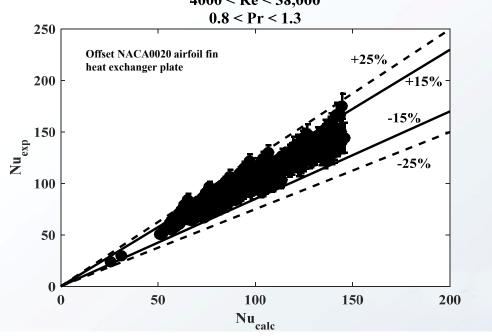
Heat exchanger plate	a	b	c	d	e
Offset rectangular fin plate	0.1034	0.7054	0.3489	0.9302	-0.366
Offset NACA0020 airfoil fin plate	0.0601	0.7326	0.3453	0.4239	-0.3556

Nusselt number – Correlation development

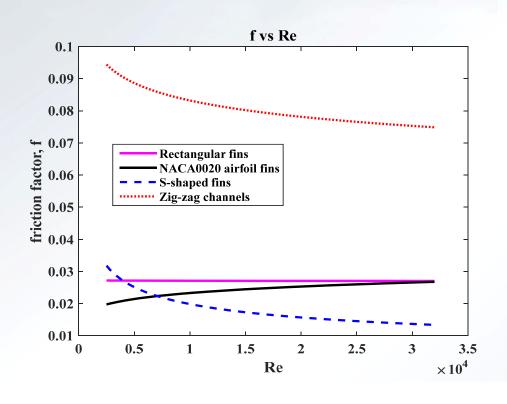
Heat exchanger plate	MAD Error	σ Error	Points with Error <15%	Points with Error <25%
Offset rectangular fin plate	9.1%	15.4%	90%	93%
Offset NACA0020 airfoil fin plate	5.2%	8%	96%	99%

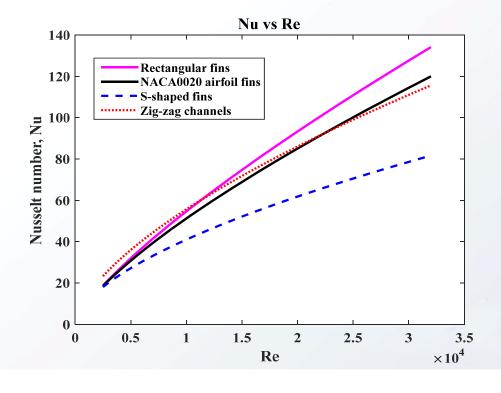

Nusselt number correlation – Gas like regimes

Heat exchanger plate	a	b	c	d/	e /
Offset rectangular fin plate	0.1034	0.7054	0.3489	0,9302	-0/366
Offset NACA0020 airfoil fin plate	0.0601	0.7326	0.3453	0.4239	4 0.3556


$$T_{GL} = 0.0034P^{3} - 0.3284P^{2} + 15.963P - 43.85$$

$$Nu_{calc} = a\overline{Re}^{b}\overline{Pr}^{c} \left(\frac{\overline{\rho_{b}}}{\overline{\rho_{w}}}\right)^{d} \left(\frac{\overline{C_{pb}}}{\overline{C_{p}}}\right)^{e}$$

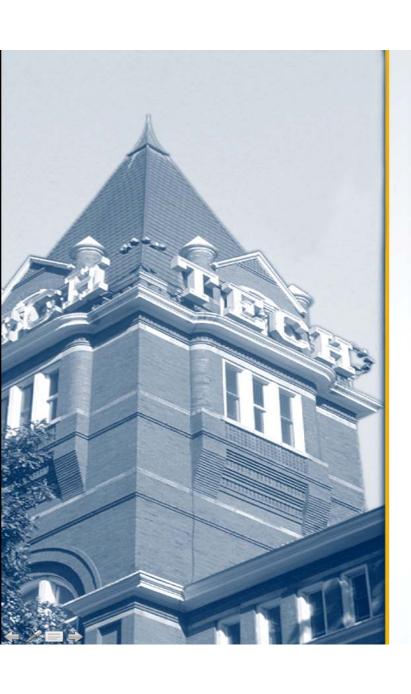

Calculated vs measured local Nusselt numbers for Gas like regime 4000 < Re < 38,000



Comparison with existing correlations

S-shaped fins from Ngo et al. (2007) \longrightarrow $f_{SS} = 0.4545 Re^{0.43}; Nu_{SS} = 0.174 Re^{0.593} Pr^{0.43}$

Zig-zag channels from Ngo et al. (2007) $\longrightarrow f_{ZZ} = 0.1924 Re^{-0.091}$; $Nu_{ZZ} = 0.629 Re^{0.629} Pr^{0.317}$

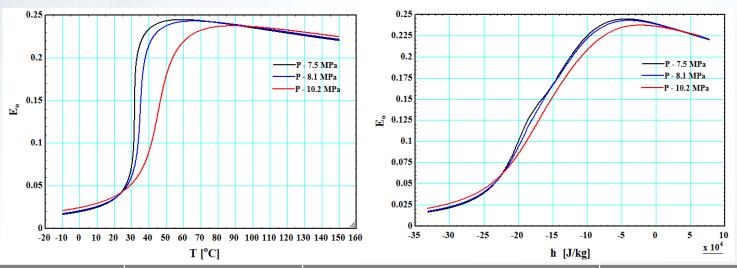


Conclusions

- Heat transfer and pressure drop characteristics of sCO₂ flow through discontinuous offset NACA0020 airfoil and rectangular fins was investigated experimentally
- Correlations to predict average and local Nusselt numbers as well as frictional pressure drop are proposed based on least squares fitting to the experimental data
- Both the heat exchanger plates offered significantly lower pressure drop compared to zig-zag channel whereas the Nusselt numbers are almost similar based on the correlations of Ngo et al. (2007)
- Mechanical Integrity of such discontinuous fins geometries needs to be verified and design procedures needs to be established.
 - Offset Rectangular fin geometries could still potentially use ASME Sec VIII procedures

Thank you for your time!

Questions?



Nusselt number correlation — Gas like regimes

• Data was divided into three regimes – Liquid like, pseudo-critical transition, and gas like regime based on specific work of thermal expansion/contraction

$$E_o = P.\beta/(\rho C_p)$$

$$T_{GL} = 0.0034P^3 - 0.3284P^2 + 15.963P - 43.85$$

Pressure [MPa]	Liquid-like regime	Pseudo-critical transition regime	Gas-like regime
7.5	T < 26.46°C	$26.46^{\circ}\text{C} \le \text{T} \le 58.79^{\circ}\text{C}$	T > 58.79°C
8.1	T < 27.25°C	$27.25^{\circ}\text{C} \le \text{T} \le 65.76^{\circ}\text{C}$	T > 65.76°C
10.2	T < 28.82°C	$28.82^{\circ}\text{C} \le \text{T} \le 88.44^{\circ}\text{C}$	T > 88.44°C