

Computational Analysis of Ceramic Heat Exchangers for Supercritical CO₂ Brayton Cycle in CSP Applications at High-Temperatures

> Dorrin Jarrahbashi Mechanical Engineering Texas A&M

Sandeep R. Pidaparti Taegyu Kang Devesh Ranjan

George W. Woodruff School of Mechanical Engineering Georgia Tech

Overview

https://www.energy.gov/eere/solar/csp-component-research-and-development

DOE-SunShot Goals

Levelized cost of electricity for CSP has decreased about 36 percent, already over half of the way toward achieving the <u>SunShot goal</u> of \$0.06 KW/h.

The Falling Cost of Concentrating Solar Power

https://www.energy.gov/eere/solar/concentrating-solar-power

Motivation

Heat-to-electricity conversion efficiency of closed-cycle Supercritical CO2 (SCO₂) turbine systems may be significantly increased (>20%) with an increase in turbine inlet temperatures from <823K to >1023K

Recompression SCO₂ power cycle integrated with the concentrated solar power plant

Material Limitation

Current HEX Technology:

- Printed Circuit HEXs:
- Patterned etching of metallic alloy plates, then diffusion bonding.
- Upper use temperature of conventional alloys < 600°C

New Ceramic Material

Thermophysical and mechanical properties of cermet at 800°C.		
Density (kg/m ³)	11400	
Conductivity (W/m.K)	65.8	
Specific Heat (J/kg.K)	285	
Thermal Diffusivity (m ² /s)	0.2x10 ⁻⁴	
Thermal Expansion Coefficient (1/K)	6.39x10 ⁻⁶	
Young Modulus (GPa)	407	

Expected Outcomes

Work in Progress

Processing Thrust:

Manufacturing of Ceramic Composite HEXs

Properties Thrust:

Chemical Stability in Molten Salts, SCO₂

Thermal and Mechanical Properties

Performance Thrust:

- HEX Modeling and Testing
- Techno-Economic Analyses

Ceramic Heat Exchanger

- Toughened ceramic-based HEXs: preform pressed into HEX shape, then converted into toughened composite
- Green body ("preform") plates with desired channel

9 cm x 15 cm x 1 cm porous, preform plate: 4 parallel millichannels (3 mm wide) in a serpentine pattern with 2 flat-bottom headers.

Ken H. Sandhage, CSP Program Summit 2016

Modeling Goals

- To develop a simulation framework to guide the design of ceramic compositebased HEXs with optimal geometries.
- The proposed ceramic HEX model is 10 cm wide, 15 cm long and 10 cm thick.
- Not a full-scale HEX at this stage.

Modeling Details

- A coupled solver for fluids and solids of the OpenFOAM modified to work with molten salt and SCO₂.
- Standard k-ε integrating and FIT (Fluid Property Interpolation Tables) program into the CFD solver to implement SCO₂ thermophysical properties.
- Simulate the transient fluid flow and heat transfer between the fluid and solid regions in the heat exchanger.

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x_j} (\rho u_j) = 0$$

$$\frac{\partial \rho u_i}{\partial t} + \frac{\partial}{\partial x_j} [\rho u_i u_j + p \delta_{ij} - \tau_{ij}] = 0$$

$$\frac{\partial \rho e_0}{\partial t} + \frac{\partial}{\partial x_j} [\rho e_0 u_j + u_j p + q_j - u_j \tau_{ij}] = 0$$

$$e_0 = e + \frac{u_i u_i}{2}$$

$$\frac{\partial}{\partial x_j} \left(\kappa \frac{\partial T}{\partial x_j} \right) = 0$$

Comparison with Experiment

- A fourth order polynomial curve fitted to the experimental wall temperature has been imposed as the boundary conditions on the top and bottom walls.
- Comparing the experimentally measured power removal for 7.5 MPa, 25C, and 762 kg/m²s demonstrated a 10% error.
- Power removal
- $\dot{Q}_{CO2} = GA(h_{in} h_{out})$

Kruizenga, A., et al. JTSEA, 2011.

Initial Conditions

Inlet conditions for SCO ₂ flow for different computational cases.				
Case	T _{in} (K)	p _{in} (MPa)	ṁ (kg/s)	
1	803	20	0.01	
2	873	20	0.012	
3	923	20	0.012	
4	773	20	0.012	
5	773	20	0.008	
6	773	20	0.006	
7	773	20	0.01	

- The inlet temperature of the molten salt for all computational cases is 993K based on DOE requirement.
- The mass flow rate and velocity of the molten salt are 0.029 kg/s and 2 m/s, respectively.

Molten Salt Properties

Salt Mixture						
	FLiBe	FLiNaK	FLiNaBe	KCI-MgCl ₂	Solar Salt	Hitec
Melting Point (K)	730	727	569	705	495	415
Maximum Temperature (K)	1073	1050	1025	1030	873	808
Density (kg/m³)	2413	2579.3- 0.624T	2435.8- 0.45T	2007- 0.4571T	2263.6- 0.636T	2279.8- 0.7324T
Temperature range for density correlation (K)	788- 1094	933-1170	800-1025	1017-1174	573-873	448-773
Heat Capacity (J/kg.K)	2385	1880	2200	1155	1396.1+ 0.17T	1560
Thermal Conductivity (W/m.K)	1.10	0.85	0.70	0.55	0.45	0.48

Fluoride salts offer higher power density and effectiveness.

Optimum Design Conditions

Molten Salt (T _{in} = 993 K)	SCO ₂ Inlet Temp. (K)	SCO ₂ Mass Flow Rate (kg/s)	Effectiveness (%)	Power Density (MW/m ³)
KCI-MgCl ₂	773	0.008	79.9	1.107
FLi-NaK	773	0.007	86.7	1.106
FLiBe	773	0.007	88.1	1.048
FLiNaBe	773	0.007	87.9	1.043

Overall Heat Transfer

On-going Work

Heat transfer coefficient is below the commercially available metal alloy PCHE.

Full-size

Simulation

HEX

- Larger surface area is required.
- Pressure-drop consideration

Design Channel Arrangement (diameter, spacing, size, pattern)

Header

Conclusions

- The heat-to-electricity conversion efficiency of closed-cycle SCO₂ significantly increased (>20%) with an increase in turbine inlet temperatures from <823K to >1023K.
- Ceramic HEXs will exhibit better performance than state-of-the-art metal-based PCHEs at a lower cost, and also enable operation at higher temperatures > 1023K.
- Such cost-effective, robust, high-temperature composite PCHEs can enable significant enhancements in SCO2 power conversion efficiencies,
- Leading to a lower levelized cost of electricity (LCOE) in power production processes that utilize SCO2 as the working fluid.
- Power density > 1 MW/m3 and pressure drop<< 100 kPa is achieved with SCO₂ inlet temperature of 773K.
- KCI-MgCl₂ provides acceptable power density > 1 MW/m³.

Thank you!

Questions?

Principal Investigators

Ken H. Sandhage Devesh Ranjan, Asegun Henry Mark H. Anderson

BACK UP SLIDES

Future Paths

- The heat-to-electricity conversion efficiency of closed-cycle Supercritical CO2 (SCO2) turbine systems may be significantly increased (>20%) with an increase in turbine inlet temperatures from <823K to >1023K
- However, closed-cycle SCO₂ turbine systems are currently limited to inlet temperatures <823K, due to the rapid decline at higher temperatures in the thermomechanical properties of metal-based heat exchangers (HEXs) used to transfer heat to the SCO₂
- we demonstrate for the first time, the cost-effective processing of tailorable ceramic/metal composite heat exchanger (HEX) plates, with attractive thermal, mechanical, and chemical properties at <u>></u>1023K

- The ZrC/W composites exhibit thermal conductivity values 2-3 times greater than Fe- or Ni-based alloys, and exhibit temperatureindependent failure strengths up to 1073K (unlike Fe- or Ni- based alloys).
- With proper tailoring of composite surfaces and/or the fluid, the ZrC/W composites were resistant to corrosion in SCO₂-based fluids at 1023K
- Simulations and cost modeling show that industrial-scale versions of these ZrC/W-based HEXs will exhibit better performance than state-of-the-art metal-based PCHEs at a lower cost, and also enable operation at higher temperatures <u>></u> 1023K.
- Such cost-effective, robust, high-temperature composite PCHEs can enable significant enhancements in SCO2 power conversion efficiencies, leading to a lower levelized cost of electricity (LCOE) in power production processes that utilize SCO2 as the working fluid.

- high-melting
- thermally conductive
- enhanced resistance to fracture
- modest thermal expansion
- and dense (hot pressed) ZrC/W composites are resistant to thermal shock at high heating rates (>1000K/sec).^{REFs}
- considered as thermal shock/erosion-resistant materials for solid-fuel rocket components
- tailoring of such composites for high-temperature HEXs have not been reported.

- Dense ZrC/W-based plates containing channels with tailorable patterns have been fabricated here via the shape-preserving reactive infiltration of green-machined porous WC preforms
- such a rigid, porous WC plate possessing four parallel channels arranged in a serpentine pattern with flat-bottomed headers

- machinable porous WC preform plates can be prepared with tailorable channel patterns and then converted via pressureless reactive liquid infiltration into dense ZrC/W-based composite plates with high-fidelity retention of the shapes and sizes of the overall preform and of the channels.
- Photograph of a 9 cm x 15 cm x 1 cm porous, rigid WC porous preform plate after green surface machining of 4 parallel millichannels (3 mm wide) in a serpentine pattern with 2 flat-bottom headers.