sCO₂ Cycle as an Efficiency Improvement Opportunity for Air-Fired Coal Combustion

Charles W. White, Walter W. Shelton, Nathan T. Weiland, Travis R. Shultz

6th International Supercritical CO₂ Power Cycles Symposium 27-29 March, 2018

Source: NETL

- Oxy-CFB Coal-fired Indirect sCO₂ Power Plant Study
- Non-Capture Indirect sCO₂ Plant Study
- Development of Improved sCO₂ Power Cycles
- Techno-Economic Analysis Results Summary
- Sensitivity Analysis Results Summary
- Heat Integration Analysis Results Summary
- Summary & Conclusions
- Ongoing and Future sCO₂ System Analysis

Oxy-CFB Coal-fired Indirect sCO₂ Power Plant Study

- A recent NETL report¹ examined the cost and performance of power plants with carbon capture based on:
 - Coal-fired oxy-CFB heat source
 - Indirect recompression sCO₂ Brayton cycle
- 4 Cycle Configurations Examined
 - Recompression Brayton cycle (Base)
 - Reheat sCO₂ turbine (Reheat)

S. DEPARTMENT OF

ENERGY

- Intercooled 2-stage main sCO₂ compressor (Intercooled)
- Reheat sCO₂ turbine and Intercooled main sCO₂ compressor (Reheat+Intercooled)

¹ National Energy Technology Laboratory (NETL), "Techno-economic Evaluation of Utility-Scale Power Plants Based on the Indirect sCO₂ Brayton Cycle,
 "DOE/NETL- 2017/1836, Pittsburgh, PA, September 2017, https://www.netl.doe.gov/research/energy-analysis/search-publications/vuedetails?id=2511

Oxy-CFB Coal-fired Indirect sCO₂ Power Plant Study Cost and Performance Results 42 Results shown for two different turbine 40.8 Plant Efficiency (HHV %) 39.9 inlet temperatures

COE (w/o T&S, \$/MWh)

Rankine

Base

- 620 °C (similar to ultra-supercritical (USC) Rankine cycle conditions)
- 760 °C (approximating advanced ultra-supercritical (AUSC) Rankine cycle conditions)
- Compared to plants employing Rankine cycles at operating conditions similar to the corresponding sCO₂ plants, the sCO₂ plant offered:
 - Significantly higher plant efficiency
 - Lower COE
- Results were consistent with prior sensitivity analyses on indirect sCO₂ cycle sensitivity to turbine inlet temperature

4

Intercooled Reheat

Non-capture Indirect sCO₂ Plant Study

NE NE IECHNOLOGY LABORATORY

Steam Rankine Comparison Cases

• Air-fired PC Boiler

- Bituminous coal
- 99% carbon conversion
- Hydrated lime injected for SO₃ control
- Powdered activated carbon (PAC) for Hg control
- SCR and OFA for NOx control
- Infiltration air 1.7% of feed air to PC boiler

• Operating conditions for Rankine plants

- Supercritical (SC) Rankine cycle¹ (Case B12A: 24.1 MPa/ 593 °C/ 593 °C)
- Advanced ultra-supercritical (AUSC) Rankine cycle² (AUSC Case 5: 34.5 MPa/ 732 °C / 760 °C)
- No low temperature flue gas heat recovery
- Wet FGD (98% efficiency) for sulfur removal (Gypsum)

Source: NETL

² National Energy Technology Laboratory (NETL), "Development of Advanced Ultra-Supercritical (AUSC) Pulverized Coal (PC) Plants," NETL – PUB – 21022, Pittsburgh,PA,December 2016

Non-capture Indirect sCO₂ Plant Study

Reference sCO_2 Process without CO_2 Capture – Case RhtlC760A

• From Oxy-CFB Coal-fired Indirect sCO₂ Plant, Case RhtIC760A removes:

- Air Separation Unit (ASU)
- CPU (Carbon Purification Unit) no CO₂ capture
- Recycle Flue Gas to CFB

• Air-fired-CFB

s. department of

- Bituminous coal
- 99% carbon conversion
- 3.1% excess O_2 to CFB
- In-bed sulfur capture (94%), 140% excess CaCO₃
- Infiltration air 2% of feed air to CFB
- Recompression sCO₂ Brayton cycle
 - Turbine inlet temperature 760 °C
- High temperature heat recovery from flue gas (Economizer)
- Low temperature flue gas heat recovery in sCO₂ power cycle

Non-capture Indirect sCO₂ Plant Study sCO₂ Cycle and Heat Source Parameters – Reference Case RhtlC760A

Section	Parameter	Reference Case RhtIC760A	
	Primary air fraction	0.235	
	Secondary air fraction	0.765	
CEB	Pressure drop	6.6 kPa	
СгВ	Excess air	3.1%	
	Infiltration air	2%	
	Lime molar feed rate	2.4 times sulfur feed rate	
	Inlet temperature	760 °C	
Evpander	Max inlet pressure	34.5 MPa	
LApandei	PR, P _{exit}	4.05, 8.51 MPa	
	Isentropic efficiency	0.927	
	P _{drop} HP side	0.2%	
Recuperator	P _{drop} LP side	0.8%	
	LTR Avg T _{app}	5.6 °C	
	HTR Min Tapp	5.6 °C	
CO ₂ cooler	Non-cond cooler	35 °C	
	P _{drop} CO ₂ side	0.8%	

Development of Improved sCO₂ Power Cycles

Approach and Methodology for Case Permutations

• Starting with reference Case RhtIC760A:

- Developed cycle state point changes and minor cycle configuration changes
- Applied each individually to reference Case RhtIC760A
- Modifications that increased process efficiency and either reduced or minimally increased COE retained for further consideration
- Using T-Q diagram for recuperator train:
 - Adjustments proposed to the heat integration scheme that were likely to increase the power cycle efficiency without having a significantly adverse impact on the COE
- The combination of these two approaches led
 - to:
 - Baseline Case
 - Alternate Configuration Case

Source: NETL

NATIONAL

NOLOGY

Development of Improved sCO₂ Power Cycles Selection of Cycle Configurations

• Baseline Case:

- Applied the promising cycle state point and configuration changes to reference Case RhtIC760A sequentially
- Order of introduction of changes was based on the results obtained from the one-off analysis
 - Changes that both increased process efficiency and lowered COE were applied first
 - Changes that increased efficiency with a neutral or slightly negative impact on COE applied next
 - Changes that would adversely impact efficiency but lead to a large drop in COE were only considered if the COE goal could not otherwise be achieved

• Alternate Configuration Case:

- Developed by first identifying promising changes in the heat integration scheme
- If a preliminary techno-economic analysis yielded a higher efficiency or lower COE than for reference Case RhtIC760A:
 - Configuration was retained for further study
 - Same methodology for sequentially applying process changes used
 - Only the most promising of these alternatives were investigated

Baseline Case

State Point and Configuration Changes Adopted

- Elimination of VTR
- Reduction in CO₂ cooler temperature to 90 °F

- Additional main CO₂ compressor intercooler stage
- Slight increase in CFB pressure

Alternate Configuration Case

State Point and Configuration Changes Adopted

• High temperature economizer (Econ1) in parallel with HTR

U.S. DEPARTMENT OF

ENERGY

Comparison of Baseline sCO₂ Plant with Rankine Plants

- Compared to reference Case^{B12A}, Baseline Case has:
 - 8.8 percentage point higher process efficiency (HHV)
 - 6.6 percentage point higher cycle efficiency
 - 36% lower water consumption
 - 16% reduction in CO² emissions
 - Lower CO₂ emissions than current EPA limit*

Performance Summary	Reference Case B12A	AUSC Case 5	Baseline Case	Alternate Config
Total Gross Power, MWe	580	578	584	584
Total Auxiliaries, MWe	30	27	17	17
Net Power, MWe	550	550	567	567
HHV Net Plant Efficiency (%)	40.7%	44.1%	49.5%	49.5%
LHV Net Plant Efficiency (%)	42.2%	45.8%	51.3%	51.3%
HHV Boiler Efficiency, %	89.1%	89.1%	92.9%	92.9%
LHV Boiler Efficiency, %	92.4%	92.4%	96.3%	96.3%
Power Cycle Efficiency, %	48.2%	52.0%	54.8%	54.8%
CO ₂ Cycle Cooling Duty/Condensor Duty, GJ/hr (MMBtu/hr)	2,192 (2,078)	1,873 (1,776)	1,701 (1,612)	1,701 (1,613)
As-Received Coal Feed, kg/hr (lb/hr)	179,193 (395,053)	165,482 (364,825)	152,162 (335,460)	152,162 (335,460)
Limestone Sorbent Feed, kg/hr (lb/hr)	17,707 (39,037)	16,352 (36,050)	35,618 (78,525)	35,618 (78,525)
HHV Thermal Input, kWt	1,350,652	1,247,323	1,146,927	1,146,927
LHV Thermal Input, kWt	1,302,740	1,203,058	1,106,225	1,106,225
Raw Water Withdrawal, (m ³ /min)/MW _{net} (gpm/MW _{net})	0.035 (9.3)	0.030 (8.0)	0.024 (6.2)	0.024 (6.2)
Raw Water Consumption, (m ³ /min)/MW _{net} (gpm/MW _{net})	0.028 (7.4)	0.024 (6.4)	0.018 (4.7)	0.018 (4.7)
O ₂ Mole Percent in Boiler Exit, %	3.4%	3.4%	1.0%	1.0%
CO ₂ Emissions (lb CO ₂ /MWh-gross)	1 617	1 490	1 353	1 353

1,617

1,490

1,353

* However, the EPA's standard is based on average annual emissions – additional analyses are required to assess system performance under realistic annual operating profiles, including part-load

1,353

Comparison of Baseline sCO₂ Plant with Rankine Plants

- Compared to reference AUSC Case 5, Baseline Case has:
 - 5.4 percentage point higher process efficiency
 - 2.8 percentage point higher cycle efficiency
 - 22% lower water consumption
 - 9% reduction in CO² emissions
 - Lower CO₂ emissions than current EPA limit*

Performance Summary	Reference Case B12A	AUSC Case 5	Baseline Case	Alternate Config
Total Gross Power, MWe	580	578	584	584
Total Auxiliaries, MWe	30	27	17	17
Net Power, MWe	550	550	567	567
HHV Net Plant Efficiency (%)	40.7%	44.1%	49.5%	49.5%
LHV Net Plant Efficiency (%)	42.2%	45.8%	51.3%	51.3%
HHV Boiler Efficiency, %	89.1%	89.1%	92.9%	92.9%
LHV Boiler Efficiency, %	92.4%	92.4%	96.3%	96.3%
Power Cycle Efficiency, %	48.2%	52.0%	54.8%	54.8%
CO ₂ Cycle Cooling Duty/Condensor Duty, GJ/hr (MMBtu/hr)	2,192 (2,078)	1,873 (1,776)	1,701 (1,612)	1,701 (1,613)
As-Received Coal Feed, kg/hr (lb/hr)	179,193 (395,053)	165,482 (364,825)	152,162 (335,460)	152,162 (335,460)
Limestone Sorbent Feed, kg/hr (lb/hr)	17,707 (39,037)	16,352 (36,050)	35,618 (78,525)	35,618 (78,525)
HHV Thermal Input, kWt	1,350,652	1,247,323	1,146,927	1,146,927
LHV Thermal Input, kWt	1,302,740	1,203,058	1,106,225	1,106,225
Raw Water Withdrawal, (m³/min)/MW _{net} (gpm/MW _{net})	0.035 (9.3)	0.030 (8.0)	0.024 (6.2)	0.024 (6.2)
Raw Water Consumption, (m ³ /min)/MW _{net} (gpm/MW _{net})	0.028 (7.4)	0.024 (6.4)	0.018 (4.7)	0.018 (4.7)
O ₂ Mole Percent in Boiler Exit, %	3.4%	3.4%	1.0%	1.0%
CO ₂ Emissions (lb CO ₂ /MWh-gross)	1.617	1,490	1.353	1,353

Comparison of Baseline sCO₂ Plant with Rankine Plants

- Compared to Alternate Configuration Case, Baseline Case has:
 - Essentially identical performance

Performance Summary	Reference Case B12A	AUSC Case 5	Baseline Case	Alternate Config
Total Gross Power, MWe	580	578	584	584
Total Auxiliaries, MWe	30	27	17	17
Net Power, MWe	550	550	567	567
HHV Net Plant Efficiency (%)	40.7%	44.1%	49.5%	49.5%
LHV Net Plant Efficiency (%)	42.2%	45.8%	51.3%	51.3%
HHV Boiler Efficiency, %	89.1%	89.1%	92.9%	92.9%
LHV Boiler Efficiency, %	92.4%	92.4%	96.3%	96.3%
Power Cycle Efficiency, %	48.2%	52.0%	54.8%	54.8%
CO ₂ Cycle Cooling Duty/Condensor Duty, GJ/hr (MMBtu/hr)	2,192 (2,078)	1,873 (1,776)	1,701 (1,612)	1,701 (1,613)
As-Received Coal Feed, kg/hr (lb/hr)	179,193 (395,053)	165,482 (364,825)	152,162 (335,460)	152,162 (335,460)
Limestone Sorbent Feed, kg/hr (lb/hr)	17,707 (39,037)	16,352 (36,050)	35,618 (78,525)	35,618 (78,525)
HHV Thermal Input, kWt	1,350,652	1,247,323	1,146,927	1,146,927
LHV Thermal Input, kWt	1,302,740	1,203,058	1,106,225	1,106,225
Raw Water Withdrawal, (m³/min)/MW _{net} (gpm/MW _{net})	0.035 (9.3)	0.030 (8.0)	0.024 (6.2)	0.024 (6.2)
Raw Water Consumption, (m ³ /min)/MW _{net} (gpm/MW _{net})	0.028 (7.4)	0.024 (6.4)	0.018 (4.7)	0.018 (4.7)
O ₂ Mole Percent in Boiler Exit, %	3.4%	3.4%	1.0%	1.0%
CO ₂ Emissions (lb CO ₂ /MWh-gross)	1,617	1,490	1,353	1,353

ATIONAL

Comparison of Baseline sCO₂ Plant with Rankine Plants

- Compared to reference Case B12A, Baseline Case has:
 - 5 MW increase in cycle output
 - 13 MW decrease in auxiliary power
 - Coal pulverizers
 - No wet FGD

. DEPARTMENT OF

NERGY

- Less cooling duty
- 17 MW increase in net plant power

Power Summary	Reference Case B12A	AUSC Case 5	Baseline Case	Alternate Config			
POWER GENERATION SUMMARY							
sCO ₂ /Steam Turbine Gross Power	588,516	586,305	741,272	740,316			
sCO ₂ Main Compressor			-85,654	-83,172			
sCO ₂ Bypass Compressor			-62,558	-64,096			
Generator Loss	-8,828	-8,795	-8,896	-8,896			
TOTAL POWER GENERATED	579,688	577,510	584,164	584,151			
AUXILIARY LOAD SUMMARY							
Coal Handling	-430	-420	-399	-399			
Sorbent Prep/Injection	-958	-890	-157	-157			
Pulverizers	-2,690	-2,480	-72	-72			
Ash Handling and Dewatering	-620	-580	-1,756	-1,756			
Baghouse	-90	-80	-7	-7			
Turbine Auxiliaries	-400	-400	-400	-400			
Wet FGD	-2,830	-2,610					
Condensate Pumps	-800	-640					
SCR	-40	-40					
Miscellaneous Balance of Plant	-2,000	-2,000	-2,000	-2,000			
Circulating Water Pump	-4,980	-4,290	-3,636	-3,636			
Cooling Tower Fans	-2,340	-2,010	-2,122	-2,122			
Air & Flue Gas Fan Power	-9,690	-8,950	-4,647	-4,647			
Transformer Losses	-1,820	-1,800	-1,794	-1,794			
TOTAL AUXILIARIES	-29,688	-27,190	-16,990	-16,990			
NET POWER	550,000	550,320	567,174	567,162			

Comparison of Baseline sCO₂ Plant with Rankine Plants

- Compared to reference AUSC Case 5, Baseline Case has:
 - 7 MW increase in cycle output
 - 10 MW decrease in auxiliary power
 - Coal pulverizers
 - No wet FGD

. DEPARTMENT OF

- Less cooling duty
- 17 MW increase in net plant power

Power Summary	Reference Case B12A	AUSC Case 5	Baseline Case	Alternate Config		
POWER GENERATION SUMMARY						
sCO ₂ /Steam Turbine Gross Power	588,516	586,305	741,272	740,316		
sCO ₂ Main Compressor			-85,654	-83,172		
sCO ₂ Bypass Compressor			-62,558	-64,096		
Generator Loss	-8,828	-8,795	-8,896	-8,896		
TOTAL POWER GENERATED	579,688	577,510	584,164	584,151		
AUXILIARY LOAD SUMMARY						
Coal Handling	-430	-420	-399	-399		
Sorbent Prep/Injection	-958	-890	-157	-157		
Pulverizers	-2,690	-2,480	-72	-72		
Ash Handling and Dewatering	-620	-580	-1,756	-1,756		
Baghouse	-90	-80	-7	-7		
Turbine Auxiliaries	-400	-400	-400	-400		
Wet FGD	-2,830	-2,610				
Condensate Pumps	-800	-640				
SCR	-40	-40				
Miscellaneous Balance of Plant	-2,000	-2,000	-2,000	-2,000		
Circulating Water Pump	-4,980	-4,290	-3,636	-3,636		
Cooling Tower Fans	-2,340	-2,010	-2,122	-2,122		
Air & Flue Gas Fan Power	-9,690	-8,950	-4,647	-4,647		
Transformer Losses	-1,820	-1,800	-1,794	-1,794		
TOTAL AUXILIARIES	-29,688	-27,190	-16,990	-16,990		
NET POWER	550.000	550.320	567,174	567,162		

Summary of Capital Costs/COE

Steam Rankine vs. sCO₂ Cases (\$/kW)

- Compared to the reference Case B12A, Baseline Case had:
 - 1.4 percent lower TOC
 - 3 percent lower COE
- Compared to the reference AUSC Case 5, Baseline Case had:
 - 1.5 percent greater TOC
 - 1.6 percent greater COE
- Compared to the Alternate Config Case, Baseline Case had:
 - \$10/kW lower TOC. Differences due to:
 - Boiler & Power Cycle Accounts
 - Differences in relative HX duties
 - Lower HTR driving force
 - Slightly greater COE (0.2 \$/MWh)
 - Difference not significant

NATIONAL

TECHNOLOGY

ENERGY

Heat Integration Analysis Results Summary

T-Q Economizer Diagram for Baseline sCO₂ plant

- LTR has an internal pinch point:
 - Minimum Tapp = $3.7 \circ C$
 - Cold end T_{app} = 11.9 °C
 Average T_{app} = 5.6 °C
- HTR has considerably larger average T_{app}:

 - Cold end T_{app} = 5.6 °C
 Hot end T_{app} = 61.2 °C
- Low temperature economizer (Econ2):
 - Cold end $T_{app} = 5.6 \circ C$
 - Hot end $T_{app} = 5.6 \ ^{\circ}C$
 - Average $T_{app} = 8.3 \ ^{\circ}C$
- High temperature economizer (Econ1):
 - Cold end $T_{app} = 5.6 \ ^{\circ}C$
 - Hot end $T_{app} = 237 \ ^{\circ}C$

S. DEPARTMENT OF

NERGY

Heat Integration Analysis Results Summary

T-Q Recuperator Diagram for Alternate Configuration sCO₂ plant

- LTR has an internal pinch point
 - Minimum Tapp = $3.7 \circ C$
 - Cold end $T_{app} = 11.7 \ ^{\circ}C$
 - Average $T_{app} = 5.6 \ ^{\circ}C$
- HTR has modestly larger average T_{app}
 - Cold end $T_{app} = 5.6 \ ^{\circ}C$
 - Hot end $T_{app} = 5.6 \ ^{\circ}C$
 - Average $T_{app} = 15.5 \ ^{\circ}C$
- Low temperature economizer (Econ2)
 - Cold end $T_{app} = 5.6 \ ^{\circ}C$
 - Hot end $T_{app} = 5.6 \ ^{\circ}C$
 - Average $T_{app} = 8.3 \ ^{\circ}C$
- High temperature economizer (Econ1)
 - Cold end $T_{app} = 283 \text{ °C}$
 - Hot end $T_{app} = 222 \ ^{\circ}C$

S. DEPARTMENT OF

Nakey

Heat Integration Analysis Results Summary

Comparing Heat Integration - Baseline Case vs. Alternate Configuration Case

Baseline Case

- Maximum LTR performance
- Moderate HTR performance
- Moderate Econ1 performance
- Maximum Econ2 performance

• Alternate Configuration Case

- Maximum LTR performance
- Near maximum HTR performance
- Poor Econ1 performance
- Maximum Econ2 performance

Efficiency and COE versus Minimum Recuperator T_{app}

- Process efficiency decreases monotonically and almost linearly with increasing minimum T_{app}
- COE passes through a minimum at a T_{app} of 6.7 °C
 - Gray dashed vertical line and green marker
- Result suggests that a lower COE could be attained with a higher minimum T_{app} of 6.7 °C
 - However the 0.2 percentage point drop in process efficiency was deemed more significant than the negligible drop in COE

Main Compressor Inlet Pressure – Reference Case RhtlC760A

- For any sCO₂ power cycle there is an optimum:
 - Turbine inlet pressure
 - CO₂ compressor inlet pressure
- Sensitivity analysis was performed on reference Case RhtIC760A to determine optimum cycle pressures
- Optimum turbine inlet pressure exceeds the maximum turbine inlet pressure constraint
 - 34.5 MPa

ENERGY

- Optimum compressor inlet pressure found to be 8.41 MPa
 - Yielded maximum process efficiency
- Optimum cycle pressure ratio = 4.1

Unit Operation Pressure Drop – Reference Case RhtlC760A

- Pressure drops used for power cycle should be considered optimistic targets that were based on the desire to maximize process efficiency
- A performance only sensitivity analysis was performed on reference Case RhtIC760A to quantify the impact of pressure drop on process efficiency
- Independent variables were the pressure drop factors
 - $\Delta P = P_{in} * Factor$

U.S. DEPARTMENT OF

ENERGY

- Pressure drop factors used were:
 - 0.008 for the CO₂ cooler, CO₂ side of economizers and LP side of recuperators
 - 0.002 for HP side of recuperators
 - 0.01 for CO₂ side of the CFB
- Process efficiency for sCO₂ power cycle is moderately sensitive to the pressure drop
 - Particularly on the low-pressure side of the cycle
- If more conservative pressure drop factors had been used (triple the optimistic values) the efficiency benefit of the Baseline Case compared to reference AUSC Case 5 would have been cut by 30%

 sCO_2 Power Cycle Component TPC, COE versus ΔTPC

- It is a study goal that the COE for the advanced technology power plants not exceed COE for reference Case B12A
- Horizontal bars are drawn to scale with respect to the horizontal axis
- For Baseline Case COE to equal reference Case B12A requires either:
 - 57 \$MM increase in the aggregate TPC
 - 5 percent increase in the aggregate TPC
 - 17 percent increase in power cycle TPC
 - 49 percent increase in turbine TPC

Narch

• 107 percent increase in recuperator TPC

- This paper has presented the results of a preliminary examination of the potential benefits of the indirect sCO₂ power cycle for improving the efficiency and cost of non-capture coal-fired power plants
- Results have shown that the sCO₂ power cycle can achieve much higher efficiencies than SOA PC/Rankine systems with no increase in COE
- Compared to prior NETL systems studies on advanced power generation technologies (e.g., PC power plant with an AUSC Rankine cycle) the sCO₂ power cycle offers a significant increase in overall efficiency of greater than 5 percentage points
- Full-load, steady-state carbon dioxide (CO₂) emissions of 1353 lbs CO_2/MWh gross nominally meets the current EPA's 1400 lbs CO_2/MWh gross for new coal plants
 - However, the EPA's standard is based on average annual emissions additional analyses are required to assess system performance under realistic annual operating profiles, including part-load
- The study has also shown that plants based on the sCO₂ power cycle have significantly lower (22-33%) water consumption than comparable reference Rankine cycle plants
 - Due to higher thermal efficiencies of the sCO_2 plants
 - Elimination of intrinsic water losses arising from the Rankine cycle such as from blowdown

Ongoing and Future sCO₂ System Analysis

FY18-FY19

- Continue to explore the indirect sCO₂ power cycle with the goals of
 - Expanding its range of application
 - Further optimizing its performance and cost
 - Reducing the current level of uncertainty in the performance and cost models
 - Exploring more complex aspects of the cycle development related to system dynamics
- One current study is exploring in greater detail the impacts of various cooling technology options on the cycle and overall plant performance
 - Goal is to optimize the cooling technology choice for any given ambient condition or site location
- Other concepts planned for near-term examination are based on the results of the sensitivity analyses performed in this study and include:
 - Investigations of condensing cycles
 - Conducting a more thorough optimization of the cycle parameters including individual minimum temperature approaches for each end of every recuperator, economizer, and intercooler
 - Better defining the trade-off between process efficiency gains and capital cost results from pressure drops in the cycle unit operations

For More Information ...

- National Energy Technology Laboratory (NETL), "Development of Coal-Fueled Indirect sCO₂ Systems without CO₂ Capture", DOE/NETL report in preparation.
- Charles W. White, Principal Engineer, KeyLogic, <u>Charles.W.White@netl.doe.gov</u>
- Walter W. Shelton, General Engineer, U.S.DOE-NETL, <u>Walter.Sheltons@netl.doe.gov</u>
- Nathan T. Weiland, General Engineer, U.S.DOE-NETL, <u>Nathan.Weiland@netl.doe.gov</u>
- Travis R. Shultz, Supervisor, EPAT, U.S.DOE-NETL, <u>Travis.Shultz@netl.doe.gov</u>

