

Exergoeconomic Analyses of different sCO₂ Cycle Configurations

Mathias Penkuhn, George Tsatsaronis

Technische Universität Berlin mathias.penkuhn@tu-berlin.de

6th Supercritical CO₂ Power Cycles Symposium Pittsburgh (USA), March 27–29, 2018

Contents

Introduction

System Description

Methodology

Results

Conclusion

Introduction

- Future power generation processes requires high-efficiency, flexible, and economically competitive processes
- Emerging field of sCO₂ power cycles
- Applications in fossil-fuel, nuclear, CSP, waste heat recovery
- Advantages: high efficiencies, increased flexibility, lower capital costs
- Vast collection of possible cycle configurations and layouts
- Identification of important cycle features considering economic and thermodynamic efficiencies necessary
- What are the important aspects of a cost-efficient sCO₂ cycle?

Modeling and Simulation

- Data is taken from the literature (reviews of Ahn et al.¹ and Crespi et al.²)
- Only indirect closed brayton cycles with generic heat source studied here
- Parameters are specified using best practice modeling and benchmark guidelines (DOE/NETL³, Weiland/Thimsen⁴)
- Property data: REFPROP for pure CO₂
- Environment conditions: Midwest-ISO (15 °C and 1.01325 bar)
- Cost estimation based on paper by Carlson et al.⁵

¹Ahn et al., Nuclear Engineering and Technology 47.6 (2015), pp. 647–661
²Crespi et al., Applied Energy 195 (2017), pp. 152–183
³DOE/NETL, QGESS: Process Modeling Design Parameters, 2014
⁴Weiland and Thimsen, A Practical Look at Assumptions and Constraints for Steady State Modeling of sCO₂ Brayton Power Cycles, 5th International Symposium – Super-critical CO₂ Power Cycles, 2016

 $^5 \, {\rm Carlson}$ et al., ASME 11th International Conference on Energy Sustainability, ES2017-3590, 2017

Simple Recuperation Cycle (a)

- Reference cycle
- Single-flow configuration
- Recuperator for high-temperature heat recovery
- Temperature pinch point inside recuperator

Reheating, Recuperation Cycle (b)

- Single-flow configuration
- General thermodynamic improvement strategy for power cycles
- Additional heat exchanger for heat supply to the cycle
- Increases specific work of the cycle

Recompression, Recuperation Cycle (c)

- Split-flow configuration
- Well-known cycle for improvement, suggested by Dostal
- Shifts pinch point temperature in recuperator
- Increases specific work of the cycle

Modified Recompression, Recuperation Cycle (d)

- Split-flow configuration
- Low pinch point temperature in recuperator
- Increases specific cycle work
- Small compression work required due to intercooling

Thermodynamic Analysis

- sCO₂ cycle simulation with AspenPlus
- Application of energy and mass balances
- Known principle: high-temperature heat source and low-temperature heat sink results in high efficiency
- Definition of thermal efficiency as parameter for comparison:

$$\eta = rac{\dot{W}_{\mathsf{net}}}{\dot{Q}_{\mathsf{Supply}}}$$

• High influence of modeling assumptions, use of quality and benchmark guidelines for comparison

Economic Analysis

- Following TRR-methodology, calculating Cost of Electricity (COE)
- Cost estimation based on baseline values
- Assumption of total plant investment for cycle
- Generic heat is assumed at zero cost, varied in sensitivity analysis

Exergy Analysis

- Exergy is the maximum theoretical useful work obtainable as the system is brought into complete thermodynamic equilibrium with its thermodynamic environment.
- Exergy can be destroyed in contrast to energy
- Quantification of the different qualities of energy (heat, work)
- Quantification of the real thermodynamic losses
- Calculation of meaningful efficiencies
- Cost assignment to energy carriers and to thermodynamic inefficiencies

Exergoeconomics Analysis

- Combination of exergetic and economic analyses
- Intention to lower product costs of the system
- Identification of main design features and their impact on the system performance
- Cost formation process is revealed
- Monetary values are assigned to thermodynamic irreversibilities

Thermodynamic Analysis

ID	Cycle Configuration	Thermal Efficiency (%)
а	Simple Recuperation Cycle	37.85
b	Reheating Cycle	38.31
С	Recompression Cycle	40.61
d	Modified Recompression Cycle	42.58

- Large power requirement for recompression cycle
- Smaller power requirement for modified recompression cycle
- High pinch point temperatures for cycles (a)/(b)/(c)
- Lower pinch point temperature for cycle (d)

Economic Analysis I

(a) Simple Recuperated Cycle									
ID	Z (\$)	Z/Z _{tot} (%)	Z/Ŵ _{Net} (\$/kW _e)						
C-1	36,641,694	30.6	366.4						
E-1	36,987,181	30.9	369.9						
E-2	11,001,614	9.2	110.0						
E-3	7,333,066	6.1	73.3						
T-1	27,658,320	23.1	276.6						
Total	119,621,876	100.0	1196.2						

(b) Reheating Cycle									
ID	Z (\$)	Z/Z _{tot} (%)	Z/ $\dot{W}_{ m Net}$ (\$/kW _e)						
C-1 E-1A E-1A E-1B E-2 E-3 T-1 T-1A	36,068,350 36,536,508 27,093,795 9,442,713 12,222,226 7,187,489 27,525,631 10,937,230	30.2 30.6 22.7 7.9 10.2 6.0 23.0 9.1	360.7 365.4 270.9 94.4 122.2 71.9 275.3 109.4						
I-18	16,588,401	13.9	165.9						
Total	119,540,205	100.0	1195.4						

Economic Analysis II

	(c) Recomp	ression Cy	rcle		(d) Modified Recompression Cycle					
ID	Z (\$)	Z/Z _{tot} (%)	Z/Ŵ _{Net} (\$/kW _e)		ID	Z (\$)	Z/Z _{tot} (%)	Z/Ŵ _{Net} (\$/kW _e)		
C-1 C-1A C-1B E-1 E-2 E-2A E-2B E-3 T-1	52,090,694 29,065,430 23,025,265 34,466,642 38,204,642 24,389,962 13,814,680 6,398,035 31,315,257	32.1 17.9 14.2 21.2 23.5 15.0 8.5 3.9 19.3	520.9 290.7 230.3 344.7 382.0 243.9 138.1 64.0 313.2		1 1A 1B 1C 2 2A 2B 3 3A	27,497,767 4,254,808 11,011,405 12,231,554 32,878,218 18,653,397 9,311,439 9,341,958 12,442,879 5,677,140	23.5 3.6 9.4 10.4 28.1 15.9 8.0 8.0 10.6 4.9	275.0 42.5 110.1 122.3 328.8 186.5 93.1 93.4 124.4 56.8		
	102,475,270	100.0	1024.0	E T 	-3B -1 otal	6,765,740 25,580,072 117,052,332	5.8 21.9 100.0	67.7 255.8 1170.5		

Exergy Analysis I

(a) Simple Recuperated Cycle										
ID	Ė _F (MW)	Ė _P (MW)	Ė _D (MW)	$arepsilon \ (\%)$	у _D (%)					
C-1	54.5	46.1	8.4	84.6	4.7					
E-1	166.6	163.3	3.3	98.0	1.8					
E-2	178.4	159.3	18.6	89.3	10.3					
E-3	25.6	_	24.0	_	13.3					
T-1	164.7	154.5	10.1	93.8	5.6					
Total	180.1	100.0	75.4	55.5	41.9					

(b) Reheating Cycle										
ID	Ė _F (MW)	Ė _P (MW)	Ė _D (MW)	$arepsilon \ (\%)$	у _D (%)					
C-1	53.4	45.2	8.2	84.6	4.6					
E-1	168.0	165.0	3.1	98.2	1.7					
E-1A	124.4	122.2	2.3	98.2	1.3					
E-1B	43.6	42.8	0.8	98.2	0.5					
E-2	215.5	194.1	20.8	90.1	11.7					
E-3	25.0	-	23.5	_	13.2					
T-1	162.9	153.4	9.4	94.2	5.3					
T-1A	64.7	61.0	3.7	94.3	2.1					
T-1B	98.2	92.5	5.7	94.2	3.2					
Total	177.9	100.0	73.3	56.2	41.2					

Exergy Analysis II

(c) Recompression Cycle						_	(d) Modified Recompression Cycle					le
ID	Ė _F (MW)	Ė _P (MW)	Ė _D (MW)	$arepsilon \ (\%)$	у _D (%)		ID	Ė _F (MW)	Ė _P (MW)	Ė _D (MW)	$arepsilon \ (\%)$	у _D (%)
C-1	85.3	73.1	12.1	85.8	7.2		C-1	37.8	31.6	6.2	83.5	3.9
C-1A	47.6	40.2	7.3	84.6	4.4		C-1A	5.9	4.8	1.0	82.2	0.7
C-1B	37.7	32.9	4.8	87.3	2.9		C-1B	15.2	12.6	2.6	82.8	1.6
E-1	158.0	155.1	2.9	98.2	1.7		C-1C	16.8	14.2	2.6	84.6	1.6
E-2	213.1	205.4	7.6	96.4	4.6		E-1	148.1	145.2	2.9	98.0	1.8
E-2A	73.9	70.0	3.9	94.8	2.3		E-2	173.6	156.8	16.8	90.3	10.5
E-2B	139.2	135.4	3.8	97.3	2.2		E-2A	15.6	14.2	1.4	91.3	0.9
E-3	22.3	-	20.9	-	12.5		E-2B	158.1	142.6	15.5	90.2	9.7
T-1	197.4	185.3	12.2	93.8	7.3		E-3	12.5	-	10.9	_	6.8
Total	167.7	100.0	63.6	59.6	37.9		E-3A E-3B	7.8 4.7	_	7.1 3.8	_ _	4.4 2.4
							T-1	146.9	137.8	9.0	93.8	5.7
							Total	159.7	100.0	55.7	62.6	34.9

Exergoeconomic Analysis I

(a) Simple Recuperated Cycle							(b)	Reheat	ing Cycle	9	
ID	c _F (\$/GJ)	c _P (\$/GJ)	Ċ _D (\$/h)	r (-)	f (-)	ID	c _F (\$∕GJ)	<i>с</i> Р (\$/GJ)	Ċ _D (\$/h)	r (-)	f (-)
C-1 E-1 E-2 E-3 T-1	5.97 0.04 4.40 7.82 5.01	9.87 0.84 5.18 - 5.97	180.59 0.49 293.99 675.51 182.83	0.65 19.35 0.18 - 0.19	0.72 1.00 0.32 0.12 0.66	C-1 E-1 E-1A E-1B E-2	5.93 0.08 0.05 0.16 4.24	9.84 0.87 0.84 0.95 4.93	175.89 0.91 0.44 0.47 318.17	0.66 9.53 14.49 4.81 0.16	0.72 1.00 1.00 1.00 0.33
Total	0.97	5.97	262.18	5.19	0.85	E-3 T-1 T-1A T-1B	7.82 4.99 5.42 4.71	- 5.93 6.38 5.64	662.10 169.56 72.11 97.32	- 0.19 0.18 0.20	0.12 0.67 0.66 0.68
						Total	0.96	5.93	252.85	5.19	0.86

Exergoeconomic Analysis II

(c) Recompression Cycle						(d) Modified Recompression Cycle					
ID	c _F (\$/GJ)	<i>с</i> Р (\$/GJ)	Ċ _D (\$/h)	r (-)	f (-)	ID	c _F (\$/GJ)	<i>с</i> Р (\$/GJ)	Ċ _D (\$/h)	r (-)	f (-)
C-1	7.27	10.99	317.29	0.51	0.68	C-1	5.45	9.61	122.41	0.76	0.74
C-1A	7.27	11.15	191.77	0.53	0.66	C-1A	5.45	9.76	20.44	0.79	0.73
C-1B	7.27	10.80	125.53	0.49	0.70	C-1B	5.45	9.69	51.06	0.78	0.73
E-1	0.04	0.85	0.45	18.36	1.00	C-1C	5.45	9.48	50.90	0.74	0.75
E-2	5.68	6.55	156.03	0.15	0.76	E-1	0.05	0.71	0.48	14.52	1.00
E-2A	5.69	7.24	79.40	0.27	0.80	E-2	3.88	4.72	234.95	0.22	0.50
E-2B	5.67	6.19	76.70	0.09	0.70	E-2A	3.93	6.63	19.27	0.69	0.86
E-3	7.82	-	589.45	-	0.12	E-2B	3.87	4.53	215.66	0.17	0.36
T-1	6.26	7.27	273.88	0.16	0.59	E-3	13.99	_	547.90	-	0.22
	0.00	7 07	007.10	7.00	0.01	E-3A	12.94	-	330.35	-	0.18
Total	0.90	1.27	207.13	7.03	0.91	E-3B	15.76	_	214.54	-	0.29
						T-1	4.50	5.45	146.53	0.21	0.69
						Total	0.82	5.45	164.59	5.64	0.90

Sensitivity

mathias.penkuhn@tu-berlin.de

sCO₂ Power Cycles Symposium

Pittsburgh (USA), March 2018, 19/21

Discussion

- Cycle layout influences cycle efficiency and cost
- Recuperator integration is of high importance for the design of a high efficiency/low cost cycle
- Compression is the main cost driver and the most important design decision for cycle cost efficiency
- Primary heat exchanger/turbine section is driven by investment costs
- Cost of upstream processes has a huge influence on cycle design
- Modified recompression design has best metrics of all cycles
- Innovative compression and recuperation integration required

Conclusions

- Importance of economic analysis for different cycle configurations
- Compression and recuperation are the most important cycle features
- Conduct compression at lowest temperature possible
- Importance of an integrated approach for cycle design (exergetic/exergoeconomic analysis) is shown, providing better understanding of cycle features
- Outlook I: complete exergy and exergoeconomic mapping of different cycles
- Outlook II: application of advanced exergy-based methods for improvement quantification and determination of component interaction

Exergoeconomic Analyses of different sCO₂ Cycle Configurations

Mathias Penkuhn, George Tsatsaronis

Technische Universität Berlin mathias.penkuhn@tu-berlin.de

6th Supercritical CO₂ Power Cycles Symposium Pittsburgh (USA), March 27–29, 2018