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ABSTRACT 

Equation of state (EOS) form the foundation for modeling the performance of carbon dioxide, 
and other, power cycles.  Commercial software packages such as Aspen Plus rely on EOSs to 
inform and predict states of matter and interactions between matter under given conditions.  
Direct fired critical carbon dioxide systems offer unique challenges for standard equation of 
states found in the literature.  In particular, the Allam Cycle utilizes a high-purity carbon dioxide 
working fluid across a wide range of conditions, including temperatures from 30C to 1150C and 
pressure from atmospheric pressure to 300 bar.  As with all direct fired systems, it will have 
impurities in the working fluid that impact key engineering variables that are derived from the 
chosen equation of state.  Peng-Robinson (PR) is a widely used EOS to describe the thermo-
physical properties of pure CO2 and its mixtures in process modeling packages for power, oil, 
gas, and petrochemical industries applications. The most common methodology of calibrating 
the PR EOS in mixtures is by using binary interaction parameters (𝑘"#) which are typically 
experimentally derived in controlled volume systems and combined using the van der Waals 
mixing rules.  However, inaccuracies in predictions from most calibrations increase when 
extrapolated outside of a narrow range of conditions, or when considering multi-species 
mixtures.  This paper presents a unique and broadly applicable methodology, treating these 
calibration parameters not as static, or sometimes temperature-dependent, quantities, 
estimated in vitro, but instead as learned functions allowed access to arbitrary side information, 
which is termed herein as conditional calibration. These functions are calibrated holistically, 
with respect to an entire system, rather than as independent scalar parameters learned 
through experiment, using the differentiability of the entire process model to enable gradient-
based learning. This work demonstrates that a small but deep multi-layer neural network, 
generating the interaction parameters of a simple PR EOS-based model of a valve, significantly 
outperforms fixed parameter models in a pair of synthetic experiments. The first attempts to 
match a set of simulation data from a more sophisticated valve model using a simple model 
whose parameters are not fixed but generated, allowed access to temperature, pressure, and 
other features of the valve. The second adds an additional physically plausible pressure 
perturbation on top of the simulation. In both cases, conditional calibration gives relative 
reductions in error on the order of 40-50%, while the fundamental physical grounding in cubic 
EOS models keeps the “black-box” learner reined in and easy to estimate, leveraging the best 



parts of machine learning and chemical process modeling. This work aims not only to offer a 
powerful methodology for empirically updating existing cubic equations of state with data from 
empirical environments, but also to advocate for a flexible, conditional, and differentiable 
approach to computational chemical engineering and process optimization in general. 
INTRODUCTION  

By using oxy-combustion and high-pressure supercritical CO2 (sCO2) in a recuperated cycle, the 
sCO2 Allam Cycle is able to generate power with near zero atmospheric emissions. This 
breakthrough technology has the potential to realize low cost and clean power generation.  
The Allam Cycle is an oxy-fired, trans-critical CO2 cycle with a low-pressure-ratio turbine.  The 
turbine exhaust gases are fed into a recuperator, cooled, water is condensed and separated, and 
the remaining vapor phase CO2 is compressed and pumped up to high pressure before recovering 
the heat in the recuperator.  The hot, high-pressure CO2 then is added as coolant to the 
combustor inlet to achieve a final turbine inlet temperature of approximately 1150°C.  The 
process is currently being demonstrated at a 50MWt demonstration plant in La Porte, TX.   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
One of the technical challenges in designing a supercritical CO2 power cycle is the physical 
behavior of the impure CO2 at relevant conditions that are typically found in the power cycle 
[1]. These conditions vary extensively from moderate pressure regions at around 30 bar 
downstream of the supercritical CO2 turbine to high pressure at around 300 bar at the inlet of 
the combustor. Operating temperature also varies from ambient to about 1150°C at turbine 
inlet [2]. Moreover, the type and concentrations of impurities such as O2, N2, and Ar will have 

Figure 1. An example of sCO2 Allam Cycle process flow. 



significant impact on the predictions of physical behaviors of a CO2 mixture such as vapor-liquid 
equilibrium and density at various conditions. Accurate prediction of the physical properties of 
CO2 mixtures has a significant impact on the reliability of process models developed in 
commercial process simulator packages such as Aspen Plus and PRO/II. In a real-world 
application, this translates to improved accuracy in turbo-machinery efficiency and equipment 
sizing that can directly impact the cost and thus the economic favorability of the process. 
 
An Equation of state (EOS) is a widely-used tool to calculate thermodynamic behaviors of pure 
substances and mixtures. An EOS relates three state variables (temperature, pressure and 
volume), and can be used to derive a variety of thermo-physical properties such as enthalpy, 
entropy, and the vapor-liquid equilibrium behavior of mixtures. Peng-Robinson (PR) is one the 
most widely used EOS to model variety of processes in oil, gas, petrochemical and power 
industries. Although PR provides satisfactory prediction of variety of systems including CO2 
mixtures, it does not accurately cover a wide range of conditions [3].  
 
PR is a cubic Equation of State that uses Van der Waals equations to expand its application from 
pure components to a multi-component mixture.  While general EOSs with complex structures 
(GECS) such as Benedict-Webb-Rubin may give better results, they contain more parameters, 
which may not be available for all substance and are more difficult to integrate into commercial 
simulation tools [4] or calibrate with non-laboratory experimental data. 
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RK 

𝑃 =	
𝑅𝑇
𝑉 − 𝑏 −	

𝑎/𝑇..0

𝑉(𝑉 + 𝑏) 
1949 

a = ∑ ∑ 𝑥"𝑥#𝑎"
6
7𝑎#

6
781 − 𝑘"#:#"  

b = ∑ 𝑥"𝑏"			8𝑘"# = 𝑘#":"  
 

SRK 𝑃 =	
𝑅𝑇
𝑉 − 𝑏 −	

𝑎(𝑇)
𝑉(𝑉 + 𝑏) 

1972 
a = ∑ ∑ 𝑥"𝑥#𝑎"

6
7𝑎#

6
781 − 𝑘"#:#"  

b = ∑ 𝑥"𝑏"			8𝑘"# = 𝑘#":"  
 

PR 
𝑃 = 	

𝑅𝑇
𝑉 − 𝑏 −	

𝑎(𝑇)
𝑉(𝑉 + 𝑏) + 𝑏(𝑉 − 𝑏) 

1976 
a = ∑ ∑ 𝑥"𝑥#𝑎"

6
7𝑎#

6
781 − 𝑘"#:#"  

b = ∑ 𝑥"𝑏"			8𝑘"# = 𝑘#":"  
 

PT 
𝑃 =	

𝑅𝑇
𝑉 − 𝑏 −	

𝑎(𝑇)
𝑉(𝑉 + 𝑏) + 𝑐(𝑉 − 𝑏) 

1982 
a = ∑ ∑ 𝑥"𝑥#𝑎"

6
7𝑎#

6
781 − 𝑘"#:#"  

b = ∑ 𝑥"𝑏"			8𝑘"# = 𝑘#":"  
c = ∑ 𝑥"𝑐"			8𝑘"# = 𝑘#":"  
 

Table 1. Several canonical cubic equations of state, including Peng-Robinson, denoted PR. 



Binary interaction parameters, 𝑘"#, are used in general models with simple structures (GESS) in 
the mixing rule noted in the table above.  They are usually determined by fitting experimental 
data into the EOS equation. The binary interaction parameters account for the attraction forces 
between pairs of non-similar molecules.  In the Li paper, as of 2008, the number of 
experimental points in the literature for various interactions with CO2 were over several 
thousand with temperatures ranging from ambient to >1000K and pressures ranging from 
atmospheric to 600MPa [5].  Attempts have been made to improve the PR prediction accuracy 
for variety of supercritical CO2 systems by tailoring the binary interaction parameters for a 
particular operation regime using experimental data, thereby correcting for the differences in 
mixing ideal and non-ideal gases [1, 6]. However, there still exist inaccuracies in modeling multi-
component mixtures.  
 
Recent studies have demonstrated the usefulness of incorporating machine learning (ML) in the 
modeling of certain chemical processes [6-9]. Modeling a chemical process with the flexibility of 
a non-parametric machine-learning algorithm can produce predictions that better reflect 
experimental data. A popular, non-parametric method for chemical process modeling is the 
artificial neural network (NN) [10]. NNs can have a high degree of flexibility and accuracy for 
predication, but require large amounts of training data to ensure a robust algorithm and prevent 
over-fitting. In general, as the complexity of the NN model increases, there is a corresponding 
increase in the number of example system states that need to be presented to the algorithm 
during the training process. 
 
There are multiple studies that show the comparison of EOSs with NNs for predicting various 
quantities in sCO2 systems. For example, the capability of a NN was demonstrated in modeling 
black pepper essential oil extraction process using sCO2 [10]. This study used a large amount of 
training data to create a reliable NN model that outperformed in oil yield predictions as compared 
to the previous hand-crafted mathematical model. Another large survey on the suitability of 
neural networks as EOSs analyzed the prediction of solid solubility in sCO2 [7], again finding them 
to outperform many standard EOSs. The improvement shown in these works significantly 
increases the usefulness of a simulation, leading to better informed design decisions.   
 
Rather than replace centuries of physical and chemical intuition outright with NNs, the goal of 
this work is to explore the best of both worlds: low-bias, assumption-free nonlinear models, but 
without losing physical grounding.  We refer to this approach, generating input-dependent 
calibration parameters of physically motivated equations of state, as conditional calibration. 
Rather than requiring enormous training data to learn physical facts, this provides an inductive 
bias that allows the use of powerful nonlinear learners with less data and less risk of bizarre, 
unphysical predictions. By viewing a segment of a process model as a differentiable computation 
graph, any and all parameters can be directly optimized by gradient methods, holistically within 
their natural and un-ideal environment. The experiments first demonstrate that conditional 
calibration with deep neural nets allows us to better model a more complex valve equation by a 
simpler one when compared to a fixed-parameter model, while learning directly from simulation 
data. Additionally, using the power of DNNs to condition on arbitrary side information, this work 
shows that conditional calibration beats fixed parameter baselines in modeling a quasi-physical 



simulated perturbation, differing from EOS expected values. In both cases the improvements 
over fixed parameter models, not only with textbook 𝑘"#  coefficients, but with fixed parameters 
fit directly to minimize the same error, are on the order of a 40-50% relative reduction in error. 
The approach, while demonstrated on simulated data, can be used to tune an EOS in the real-
world conditions of direct-fired sCO2 power cycles, and more broadly. 
 
METHODOLOGY 
 
Valves provide for a confined test case for which to evaluate the performance of an EOS against 
a real system.  For certain valves, upstream pressure, temperature and mass flow are known.  In 
simulation, the EOS calculates molar volume where molar volume is the mixture volume divided 
by the number of moles within the mixture.   
  
The volumetric flow rate upstream of the valve is calculated as: 

𝑄 =	
𝜈 ∗ 𝑚̇
𝑀𝑊C"D

 

Where 𝜈 is the molar volume and 𝑀𝑊C"D  is the mixture molecular weight which is calculated as 
follows: 

𝑀𝑊C"D = 	E𝑥"𝑀𝑊"
"

 

Where 𝑖 represents the various constituents of the mixture and 𝑥" their mole fraction.  For an 
oxy-combustion system, example constituents could include oxygen (O2), carbon dioxide (CO2), 
water (H2O), nitrogen (N2), Argon (Ar) and others. 
 
The outlet pressure, in the simple liquid case, is found using the valve equation: 

𝑃GHI = 𝑃"J − 𝑆𝐺	(
𝑄
𝐶𝑣)

O 

Where 𝑆𝐺 is specific gravity, 𝐶𝑣 is the flow coefficient of the valve and 𝑄 is volumetric flow rate.   
 
Specific gravity is defined as: 

𝑆𝐺 =
𝑀𝑊C"D

𝜈 ∗	𝜌QRIST
	 

 
In addition to the simplified valve model, in an empirical situation, it is likely that 𝑃GHI will be 
mispredicted given the EOS’s inability to accurately predict density across all temperature and 
pressure conditions expected to be found in a direct-fired facility like the Allam Cycle.  In this 
paper, to simulate this inaccuracy in the modeling, a 𝑃GHIISUI  was created by perturbing the 
calculation of the outlet pressure in a non-random manner.  The perturbation, for the purposes 
of modeling, was based on the relative opening of the valve.  Assuming the error to be a bounded 
by 10psi on either side of the estimated pressure, as the valve opens, the pressure is more likely 
to be higher than the estimation.  Similarly, as the valve closes, the pressure is more likely to be 
lower.  The function for the perturbation is based on the valve characteristic curve. In this work, 
an equal percentage valve was used with the following equation from Aspen’s standard valves: 



𝑉 =	
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A neural net is trained to take as input representation the inlet temperature, inlet pressure, and 
valve position, and to output the binary interaction parameters. The training method is described 
in the sequel. The range of inputs are chosen for a valve that would experience very wide 
pressure and temperature ranges within the dynamic simulation model.   
 
MODEL ARCHITECTURE 
 
This work relies crucially on the view of the equation of state, valve equation, and neural network 
as a single differentiable computation graph. The differentiable computation graph abstraction 
conceptualizes a system as a group of connected computational modules, each of which is 
capable of computing a derivative with respect to its input(s) and parameters. In this work, the 
first piece of the graph is a neural network, the definition of which is briefly reviewed below. 
 
A simple type of feedforward neural network is a series of affine transformations followed by 
pointwise nonlinear functions, stacked in layers where the output of each is input to the next 
layer. The dimensionality of the affine transformation is called the number of hidden units in the 
layer. Often an affine transformation of the final layer’s output produces the function of interest. 

 
𝐿𝑎𝑦𝑒𝑟"(𝑥) = 𝑓(𝑊"𝑥 + 𝑏") 

 
ℎ"bc = 𝐿𝑎𝑦𝑒𝑟"b"(ℎ") 

 
Where f is a pointwise nonlinearity. In this work, all experiments use the nonlinearity 𝑓(𝑥) =
max(0, 𝑥), known as the rectified linear unit or ReLU [11].  
 
A NN with several layers is known as a deep neural network (DNN). These affine transformations 
can be fit to minimize a loss function, making DNNs a powerful class of nonlinear function 
approximators.  

𝐷𝑁𝑁(𝑥) = 𝑊ℎJ + 𝑏  
	
𝑥 = ℎ. 

 
Because each element of the weight matrix 𝑊"  represents an interaction parameter between 
one of the input units with one of the output units, these scalars are often called connections 
and a DNN can be visualized as a graph of these connections, as can be seen in Figure 2.  
 
The model uses three input variables: inlet pressure, inlet temperature, and valve position. These 
three input variables are expanded as a 4th degree polynomial, giving a total of 35 input variables 
for the DNN. These variables are passed into a 4-layer DNN of 64 hidden units per layer, with a 
final affine transformation producing the necessary 𝑛(𝑛 − 1) 𝑘"#’s, which are then reshaped and 
symmetrized into the interaction matrix of the Peng-Robinson EOS. 



 

 
Figure 2. The conditionally calibrated EOS predicting valve outlet pressure, viewed as an end-to-end 
learnable computation graph. Note also the connections between nodes in the neural network, 
representing entries of the matrices 𝑊".  

The PR EOS can itself be viewed as a component in the differentiable computation graph: a 
function of 𝑘"#  that outputs molar volume (given temperature, pressure, mixing proportions, 
critical properties, etc.) Since the need is only for the largest real root of the cubic, the solver is 
implemented with trigonometric and hyperbolic methods, sidestepping the necessity of complex 
numbers for simplicity. Omitting the equations for brevity, the solution for the largest real root 
of a cubic can be described by a piecewise combination of 3 nested series of radicals and 
hyperbolic trigonometric functions, each one a differentiable component of the graph. 
 
The valve equation is obviously differentiable (at the points of interest), as is the squared error 
function between predicted and desired outlet pressure. The gradient of this error with respect 
to the 𝑘"#’s and the parameters of the DNN can be computed in the same amount of time it takes 
to compute the function itself, using the backpropagation algorithm [12], also known as reverse-
mode automatic differentiation [13], and the adjoint state method in PDE-constrained 
optimization [14]. 
 
The model is implemented in TensorFlow [15], a software package for differentiable computation 
graphs. The parameters are optimized with minibatch stochastic gradient descent (sometimes 
called the Robbins-Monro algorithm [16]), selecting 64 input-output pairs at a time at random 
and updating the parameters with the average error gradient and training until convergence. 
 
EXPERIMENTAL DETAILS 
 
This paper presents two sets of experiments, treating both unperturbed and perturbed 
simulation results from a commercial package incorporating more sophisticated vapor-fluid 
mixture modeling as “ground truth,” and testing the ability of two different models to calibrate 
their EOS to the valve simulations, end-to-end. The first proposed model uses a fixed (but still 
learned by gradient descent in the same manner) parameter matrix of 𝑘"#’s, the second is the 
DNN-based model which conditionally calibrates the EOS based on the current inputs. In order 
to evaluate the capability of a model that includes a powerful function approximator like a DNN, 



the data is partitioned into a train/development/test split, holding out approximately 20% of the 
dataset of 4906 points at random as testing points, and another 20% as a development set. The 
parameters of the models are fit by gradient descent on the remaining 60% of the data, while 
architectural and optimization decisions (called hyperparameters) are evaluated by their 
performance on the development set. Final evaluation is performed by finding the model that 
performs best on the development set and applying it to the test data. This is most useful when 
using iterative methods like gradient descent and low-bias models like DNNs, as the rule of thumb 
to stop optimizing (or optimize slower) once your performance on the development data stops 
improving. The goal is not optimization per se but statistical learning; a low train error is 
undesirable if it fails to usefully generalize to the population distribution. 
  
RESULTS AND DISCUSSION 
 
As documented in Table 2, the conditionally calibrated model significantly outperforms the 
statically parameterized model, and both outperform the standard textbook EOS parameters 
since they are learned jointly in a >2 species mixture.  
 
 On the perturbed task, our approach achieves a ~44% relative reduction in error for dynamic 
calibration over static parameters fit through the same technique. On the unperturbed task, the 
best model achieves a remarkably similar ~45% relative reduction in error. Both static and 
conditional jointly calibrated 
parameters dominate the 
standard Peng Robinson 𝑘"#  
for these synthetic tasks. 
 
Many interesting phenomena 
are apparent when fitting 
both the static and 
conditionally calibrated 
models to empirical valve 
data. 𝑘"#′s are considered 
“semi-physical,” representing 
attraction between different 
species and calculated from 
VLE data in laborious pairwise 
experiments, and considered 
to be independent of 
temperature range, 
additional composition, 
and volume.   There is 
evidence [16-18] that 
temperature and 
composition play a role, motivating the need for conditional calibration. 
 

Model Perturbed Test AAD % 
Standard 𝑘"#  Yes 0.7052 

 Learned 𝑘"#  (fixed)  0.6625 
Conditional Calibrated 𝑘"#    

Depth   
2 
4 
6 
8 

 0.5213 
0.4112 
0.3752 
0.3703 

Standard 𝑘"#  No 0.4417 
Learned 𝑘"#  (fixed)  0.4205 

Conditional Calibrated 𝑘"#    
Depth   

2 
4 
6 
8 

 0.3659 
0.3574 
0.2334 
0.2569 

Table 2. Results of traditional fixed 𝑘"# , fixed learned, and conditionally 
calibrated parameters on both tasks. Test AAD % refers to the metric of 
average absolute deviation on test data set, using the model with best 
development set performance. Bold numbers mark best performance. 



Further, when directly fit to the conditions of a simulated system, quite different, often larger 
magnitude 𝑘"#  arise. Even in the unperturbed case, the computation graph model does not 
possess all of the liquid-vapor correction terms of the ground truth simulation and is able to 
improve its error versus the standard 𝑘"#’s by gradient descent, and even further by conditional 
calibration using the same inputs of pressure, temperature, and valve position.  
 
Similarly, in the perturbed experiments, explaining the positive or negative pressure 
perturbations require the conditionally calibrated model to posit large repulsive or attractive 
forces between species, learned from the input. 
 
This stands to reason, as the calibration is attempting to explain significant modeling differences 
between the basic EOS and the gold-standard simulation, especially around the critical point, 
while being only able to affect the outlet pressure by modifying the 𝑘"#  parameters. While this is 
somewhat of an artificial constraint, it is meant to demonstrate several things:  
 

(1) Laboriously calculated binary EOS parameters can be calibrated on-the-fly to 
custom, non-idealized systems with heterogeneous conditions and multi-species 
mixtures in a way that is both less time consuming and more accurate within its 
area of data input. 

(2) Powerful conditional machine learning models like DNNs, allowing arbitrary 
covariates and side information to inform their predictions, can be safely 
“regularized”, trained on little data, and prevented from overfitting by allowing 
them to only affect certain parameters of a semi-empirical model derived from 
reasonable physical principles, like cubic EOS, rather than having to learn a whole 
DNN-based EOS from scratch with the attendant burdens of massive training data 
and apprehensions regarding non-physicality.  

(3) Tunable semi-physical degrees of freedom in a process model, rather than posing 
estimation challenges in vitro, should be looked at as opportunities to fit directly 
in vivo to complex systems through automatic differentiation, with modern 
machine learning methods providing powerful tools to condition on sensors and 
other side information. 

 
CONCLUSION AND FUTURE WORK 
 
This work demonstrates through synthetic experiments that standard EOS can achieve large 
decreases in error by conditionally calibrating their parameters holistically with respect to a 
process model. We advocate not only for nonlinear conditional calibration of EOS, but also 
increased use of differentiable computation graph methods for computational chemical and 
process engineering in general.  
 
Future work will continue to explore this exciting intersection between chemical process 
modeling and machine learning, past the proof-of-concept and towards the development of a 
rich “modeling language.” Idealized component models (e.g. valves, turbomachinery and heat 
exchangers) and parsimonious, physically-motivated correction parameters, increase 



tremendously in power when those parameters are dynamically conditioned on side-information 
through deep learning models, while simultaneously encouraging these over-parameterized 
models to generalize from far fewer training samples. Machine learning methods will help to ease 
the burden of parameter estimation and conditional modeling, while centuries of physical 
intuition provide a powerful inductive bias for the learner.  
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