

Supercritical CO₂ Power Cycles Symposium

Tutorial: Fundamentals of Supercritical CO₂

March 28, 2016

Grant Musgrove Aaron M. Rimpel Jason C. Wilkes, Ph.D.

Southwest Research Institute

© Southwest Research Institute 2015

Abstract

The recent interest to use supercritical CO_2 (s CO_2) in power cycle applications over the past decade has resulted in a large amount of literature that focuses on specific areas related to s CO_2 power cycles in great detail. Such focus areas are demonstration test facilities, heat exchangers, turbomachinery, materials, and fluid properties of CO_2 and CO_2 mixtures, to name a few. As work related to s CO_2 power cycles continues, more technical depth will be emphasized in each focus area, whereas those unfamiliar with the topic are left to undertake the large task of understanding fundamentals on their own.

The following content provides an introductory tutorial on sCO_2 used in power cycle applications, aimed at those who are unfamiliar or only somewhat familiar to the topic. The tutorial includes a brief review of CO_2 and its current industrial uses, a primer on thermodynamic power cycles, an overview of supercritical CO_2 power cycle applications and machinery design considerations, and a summary of some of the current research and future trends.

This tutorial provides an introduction to sCO_2 in power cycle applications

sCO₂ loop hardware

Concentrated Solar Power

Ship-board Propulsion

Power cycle applications

Research and future trends

CO₂ General Information

CO_2 is a gas at atmospheric conditions with a concentration of \approx 400 ppm

Image source [1-1]

There are both industrial and natural contributors and consumers of CO₂ in our atmosphere

Fossil fuel combustion is the largest industrial contributor to CO₂ production

Source: "U.S. Climate Action Report 2014"

Transportation (petroleum) and electricity generation (coal) majority contributors of CO₂

Source: "U.S. Climate Action Report 2014"

International regulations are continually reducing **CO**₂ emissions in vehicles 240

CO₂ Industrial Applications

Agriculture

Welding (shield gas)

Oil & gas production (more info with sCO₂)

What is Supercritical CO₂?

CO₂ is supercritical if the pressure and temperature are greater than the critical values

Entropy (kJ/kg-K)

REFPROP (2007), EOS CO₂: Span & Wagner (1996)

Video of Supercritical CO₂

Image source: [2-2]

Fluids operating near their critical point have dramatic changes in enthalpy

CO₂ density sharply decreases near the critical point

CO₂ density sharply decreases near the critical point

CO₂ density decreases near the critical point

CO₂ speed of sound decreases through the critical point

SwRI[®]____

REFPROP (2007)

CO₂ viscosity decreases through the critical point

SwRI_

REFPROP (2007)

 $1 \mu Pa-s = 10^{-6} \text{ kg/m/s}$

CO₂ thermal conductivity is enhanced near the critical region

REFPROP (2007)

CO₂ thermal conductivity is enhanced near the critical region

REFPROP (2007)

Power Cycle Basics

Power Cycle Basics Overview

Also... Differences between ideal and actual cycles

Improvements to simple cycle

Carnot Cycle

Processes

- (1-2) Isothermal heat addition
 (2-3) Isentropic expansion
 (3-4) Isothermal heat rejection
 (4-1) Isentropic compression
- Not practical to build
- Most efficient heat engine

 $\eta_{th,Carnot} = 1 - T_L/T_H$

- $\downarrow T_L$: Limited by available sink
- $\uparrow T_H$: Limited by materials

Entropy

Thermodynamics Aside... 1st Law

Brayton Cycle (Ideal)

Processes

(1-2) Isentropic compression
(2-3) Const. pres. heat addition
(3-4) Isentropic expansion
(4-1) Const. pres. heat reject.

Open- or closed-loop

 $\eta_{th,Brayton} = 1 - PR^{(1-k)/k}$

Optimal PR for net work

Rankine Cycle (Ideal)

Processes

(1-2) Isentropic compression
(2-3) Const. pres. heat addition
(3-4) Isentropic expansion
(4-1) Const. pres. heat reject.

- Same processes as Brayton; different hardware
- Phase changes
- E.g., steam cycle

 $\eta_{th} = 1 - Q_{in}/Q_{out}$

Ideal vs. Actual Processes

1-2, 3-4: Irreversibilities

2-3, 4-1: Pressure losses

Power Cycle Variations

- □ Regeneration
- Intercooling
- Reheating
- Recompression
- □ What is supercritical power cycle?

Brayton Cycle + Regeneration

Intercooling & Reheating... Two Sides of the Same Coin

Multi-Stage Intercooling & Reheating

Brayton Cycle + Regeneration + Intercooling + Reheating

Figure reference: Cengel and Boles (2002)

Regeneration vs. Recompression in Brayton Cycle

Rankine Cycle + Reheating

What is a Supercritical Power Cycle?

Entropy, S

sCO₂ Power Cycles

Why sCO₂ for Power Cycles?

Property	Effect
High density near C.P.	 Reduced compressor work, large W_{net} Allow more-compact turbomachinery to achieve same power Less complex – e.g., fewer compressor and turbine stages, may not need intercooling
Near-ambient T _{crit}	 Good availability for most temperature sinks and sources
Abundant	Low cost
Familiar	 Experience with standard materials

CO₂ Critical Point Comparison

CO₂ Cost Comparison*

*Based on market pricing for laboratory-grade substance

The sCO₂ power cycle can provide efficiencies near a steam cycle for less \$/kWh

Source: Wright (2011) and Dostal (2004)

67

Relative Size of Components

Source: Wright (2011)

Example: 10 MWe Turbine Comparison

Source: Persichilli et al. (2012)

sCO₂ in Power Cycle Applications

Supercritical CO₂ in Power Cycle Applications

Geothermal

Concentrated Solar Power

Fossil Fuel

Ship-board Propulsion

SwRI

[6-5]

"Typical" sCO2 Cycle Conditions

Application	Organization	Motivation	Size [MWe]	Temperature	Pressure
				[C]	[bar]
Nuclear	DOE-NE	Efficiency, Size	300 - 1000	400 - 800	350
Fossil Fuel	DOE-FE	Efficiency, Water Reduction	500 - 1000	550 - 1200	150 - 350
Concentrated Solar Power	DOE-EE	Efficiency, Size, Water Reduction	10 - 100	500 - 800	350
Shipboard Propulsion	DOE-NNSA	Size, Efficiency	10, 100	400 - 800	350
Shipboard House Power	ONR	Size, Efficiency	< 1, 1, 10	230 - 650	150 - 350
Waste Heat Recovery	DOE-EE ONR	Size, Efficiency, Simple Cycles	1, 10, 100	< 230; 230-650	15 - 350
Geothermal	DOE-EERE	Efficiency, Working fluid	1, 10, 50	100 - 300	150

Heat Source Operating Temperature Range & Efficiency

Assumptions (Turbomachinery Eff (MC 85%, RC 87%, T 90%), Wright (2011)

Supercritical CO₂ in Power Cycle Applications

Cold CO2 Cold CO2 Isoric 200°C 200°C

Geothermal

Concentrated Solar Power

Fossil Fuel

Ship-board Propulsion

[6-5]

Concentrated Solar Power (CSP)

- □ The Sun-Motor (1903)
 - Steam Cycle
 - Pasadena, CA
 - Delivered 1400 GPM of water
- □ Solar One (1982)
 - 10 MW_e water-steam solar power tower facility
 - Barstow, CA
 - Achieved 96% availability during hours of sunshine
- □ Solar Two (1995)
 - Incorporated a highly efficient (~99%) molten-salt receiver and thermal energy storage system into Solar One.

Image source: [6-6]

Image source: [6-7]

CSP – Improvement Opportunities

Advanced power cycles

- Supercritical steam Rankine
- High temperature air Brayton
- Supercritical CO₂

□ Cooling

- 650 gal H₂0/MWh
- Dry-cooling technology is needed in most desert venues for CSP – 43°C Dry bulb
- Printed circuit heat exchangers may provide a solution

Image source: [6-1]

sCO₂ CSP Process Diagram

Dual-shaft, tower receiver sCO_2 Brayton Cycle solar thermal power system with thermal energy storage, Zhiwen and Turchi (2011)

CSP Efficiencies vs. Power Cycle

Data from Stekli (2009)

The transient challenges of a concentrated solar power plant are significant

Optimal Cycle Configuration with varying Compressor Inlet Temperature

- SAM modeling of typical sites shows an annual average compressor inlet temperature to be 37-38°C assuming 15°C approach temperature in the cooler
- Cycle Modeling
 - Optimal flow split
 - 22-33%
 - Heavily dependent on CIT
 - Optimal PR
 - Varies with use of intercooling
 - Intercooled cycles are more efficient on hot days, and less efficient on cool days

Wide-Range Impeller Requirements

- Range Requirements at Optimal Efficiency Condition (without using range reduction techniques)
 - Compressor > 55%
 - Recompressor > 37%
- Control Strategies
 - Alter flow split and pressure ratio to reduce compressor requirements
 - Control compressor inlet temperature
 - Employ inlet guide vanes

CSP Compressor Inlet Variation and Turbomachinery Performance

Figure 5: Comparison of Operating Range and Pressure Ratio Requirements [Modified from Japikse^[5]]

Conceptual 10 MW_e Integrally Geared Compressor Applied to Recuperated Brayton Cycle

IGC Offers Compact Configuration for this Application

- Compressor, re-compressor, turbine and gearbox are assembled in a single compact core.
- The second gearbox, additional couplings and housings in the conventional train can be eliminated
- Simple IGC package can potentially reduce costs by up to 35%

Supercritical CO₂ in Power Cycle Applications

200°C Zone 1 Supercritical Co₂ 200°C Zone 1 Supercritical Co₂ 200°C Zone 3 Supercritical Co₂ 200°C Zone 3 Supercritical Co₂ 200°C Zone 3 Co₂ + Water (increased) years water (increased) years water (increased) years years (increased) yea

Geothermal

Concentrated Solar Power

Fossil Fuel

[6-4]

Nuclear

Ship-board Propulsion [6-5]

Rankine Cycle Application: Nuclear Power Generation

Image source: [6-8]

sCO₂ for Nuclear Applications (550°C-700°C, 34 MPa)

Image source: [6-9]

Image source: [6-4]

Proposed Nuclear sCO₂ Cycles

Kato et al. (2007)

Nuclear Plant Efficiency vs. Cycle Prop.

Advantages of CO₂ Cycle vs. Helium Cycle in Nuclear Applications

Pro	Con
Smaller turbomachinery than steam or helium	Helium preferred to CO ₂ as a reactor coolant for cooling capability and inertness
CO ₂ Brayton cycles are more efficient than helium at medium reactor temperatures	CO ₂ requires a larger reactor than helium or an indirect cycle
CO_2 is 10× cheaper than Helium	New technology

Supercritical CO₂ in Power Cycle Applications

Geothermal

Concentrated Solar Power

Fossil Fuel

Ship-board Propulsion

[6-5]

Oxy-Fuel Combustion

Conventional Combustion

Direct Oxy-Fuel Combustion

Indirect Oxy-Fuel Combustion

Supercritical CO₂ in Power Cycle Applications

Geothermal

Concentrated Solar Power

Fossil Fuel

[6-5]

Ship-board Propulsion

Ship-board Propulsion

 \Box Nuclear sCO₂ cycles?

5 m

- □ Improved power to weight
- Rapid startup
- Bottoming cycles

Image source: [6-10]

Steam turbine: 55 stages / 250 MW Mitsubishi Heavy Industries Ltd, Japan (with casing)

Helium turbine: 17 stages / 333 MW (167 MW_e) X.L.Yan, L.M. Lidsky (MIT) (without casing)

Supercritical CO₂ turbine: 4 stages / 450 MW (300 MW_e) (without casing)

Compressors are of comparable size

SwRI

Source: Dostal (2004)

Supercritical CO₂ in Power Cycle Applications

Inject Hot CO₂ Out Cold CO₂ Out Calcite: Sealing Zone 180°C 200°C Zone 1 Supercritical CO₂ CO₂ + Water (increased) percentical CO₂ CO₂ + Water (increased) Water + Dissolved CO₂

Geothermal

Concentrated Solar Power

Fossil Fuel

Ship-board Propulsion

[6-5]

Geothermal

□ Low Temperature Heat Source

• T ≈ 210°C, P ≈ 100 bar

Other sCO₂ Power Cycle Applications

Waste Heat Recovery (Bottoming)

Rankine Cycle Description

- 1. Liquid CO_2 is pumped to supercritical pressure
- 2. sCO2 accepts waste heat at recuperator and waste heat exchanger
- 3. High energy sCO₂ is expanded at turbo-alternator producing power
- 4. Expanded sCO₂ is cooled at recuperator and condensed to a liquid at condenser

COOLED

sCO₂ Rankine Cycle in Combined Heat and Power (CHP)

- Electrical efficiency
 - Higher than ordinary steam CHP
 - Cascaded s-CO2 plant performed best

sCO₂ as a Refrigerant

Image source: [6-13]

Image source: [6-14]

sCO₂ vs R-22 in Refrigeration

- □ Employed MCHEs
- □ Summary
 - CO₂ COP vs. R-22
 - -42% Lower at 27.8°C
 - 57% Lower at 40.6°C
 - Majority of entropy generation in CO2 cycle was in the expansion device

sCO₂ in Heat Pumps

- sCO₂ replaced as a refrigerant in domestic heat pump hot water heater in Japan.
 - COP = 8, 90°C (194°F)
 - Compared to $COP_{typ}=4-5$

$$\left(COP = \frac{Q_h + W_e}{W_e}\right)$$

Image source: [6-14]

EcoCute Heat Pump (2007)

Supercritical CO₂ Power Cycles Symposium

sCO₂ Power Cycle Research Efforts

Development of a High Efficiency Hot Gas Turbo-expander and Low Cost Heat Exchangers for Optimized CSP SCO₂ Operation

J. Jeffrey Moore, Ph.D. Klaus Brun, Ph.D. Pablo Bueno, Ph.D. Stefan Cich Neal Evans Kevin Hoopes Southwest Research Institute C.J. Kalra, Ph.D., Doug Hofer, Ph.D. **Thomas Farineau General Electric** John Davis Lalit Chordia Thar Energy **Brian Morris**

Taken from SunShot Subprogram **Review: Concentrating Solar Power** (Sunshot Grand Challenge Summit Anaheim, CA, May 19-22, 2014)

SunShot 159 U.S. Department of Energy

Project Objectives

- To develop a novel, high-efficiency supercritical sCO₂ turbo-expander optimized for the highly transient solar power plant duty cycle profile.
 - This MVV-scale design advances the state-of-the-art of sCO₂ turbo-expanders from TRL3 to TRL6.
- To optimize compact heat exchangers for sCO₂ applications to drastically reduce their manufacturing costs.
- The turbo-expander and heat exchanger will be tested in a 1-MWe test loop fabricated to demonstrate component performance and endurance.
- Turbine is designed for 10 MW output in order to achieve industrial scale
- The scalable sCO₂ expander design and improved heat exchanger address and close two critical technology gaps required for an optimized CSP sCO₂ power plant
- Provide a major stepping stone on the pathway to achieving CSP power at \$0.06/kW-hr levelized cost of electricity (LCOE), increasing energy conversion efficiency to greater than 50% and reducing total power block cost to below \$1,200/kW installed.

Project Approach

- Work has been divided into three phases that emulate development process from TRL3 to TRL6
- Phase I Turbomachinery, HX, and flow loop design (17 months)
- Phase II Component fabrication and test loop commissioning (12 months)
- Phase III Performance and endurance testing (6 months)

Recuperator Prototypes – 5 and 50 kW

DMLS:

- Expensive and slow to build
- Highly automated
- High pressure drop
- Tested to 5000 psi

Laser Welded Construction:

- Undergoing flow tests
- Exceeded design predictions for HTC
- Held 2500 psi @ 600° F

TURBOEXPANDER DESIGN

- A novel turboexpander has been designed to meet the requirements of the sCO2 power with these targets:
- ~14MW shaft power
- >700C inlet temp
- >85% aero efficiency

DGS Face Pressure Distribution from CFD

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25

CFD Analysis

Multi-stage Axial Turbine

I0 MW SCO2 Turbine Concept

Test Loop Design

Mechanical Test Configuration

Future Work

- Test heat exchanger prototypes
- Heat exchanger design nearing completion
- Complete Turbomachinery Design
- Procure long lead items for expander and test loop
- Finalize test loop design

DOE sCO₂ Test Program

- Research compression loop
 - Turbomachinery performance
- Brayton cycle loop
 - Different configurations possible
 - Recuperation, Recompression, Reheat
 - Small-scale proof-of-technology plant
 - Small-scale components
 - Different than hardware for commercial scale

DOE sCO₂ Test Program Turbomachinery

Source: Wright (2011)

sCO₂ Brayton Cycle Test Loop

Source: Wright (2011)

sCO₂ Brayton Cycle Test Loop

Source: Wright (2011)

sCO₂ Brayton Cycle Performance with Regeneration Config.

Source: Conboy et al. (2012)

DOE sCO₂ Test Program Summary

- Major milestones
 - Test loops operational
 - Demonstrate process stability/control
- Areas for future development
 - Heat exchanger performance
 - Larger scale test bed
 - Utilize commercial-scale hardware
 - Demonstrate more-realistic (better) performance
 - CO₂ mixtures

Printed Circuit Heat Exchanger (PCHE)

sCO₂ test loop used by Sandia/ Barber-Nicholls

Heatric PCHE

Le Pierres (2011)

Heat Exchanger Testing (Bechtel)

□ 150 kW
□ 8000 lbm/hr sCO₂
□ 2500 psi

Nehrbauer (2011)

Tokyo Institute of Technology (TIT)

Supercritical CO₂ Cycle Mockup Test Loop

- 1. Compressor work reduction around the critical point,
 - 2. Pressure drop performance of new MCHE

(Kato et al., 2007)

Corrosion Loop at Tokyo Institute of Technology

316 SS, 12% Cr alloy, 200-600°C, 10 Mpa CO₂, Kato et al. (2007)

Other sCO₂ Corrosion Test Facilities

- □ MIT 650°C, 22 MPa
 - Steels
- □ UW 650°C, 27 MPa
 - Steels

Guoping (2009)

- French Alternative Energies and Atomic Energy Commission - 550°C, 25 MPa
 - Steels
- □ MDO Labs 54.4°C, 12.4 MPa
 - Elastomers, engineering plastics, rubbers, etc.

Geothermal Research

- Explore the feasibility of operating enhanced geothermal systems (EGS) with CO₂ as heat transmission fluid
- Collaboration between LBNL (Pruess), UC Berkeley (Glaser), Central Research Institute of the Electric Power Industry, Japan (Kaieda) and Kyoto University (Ueda)
 - UC Berkeley: laboratory testing of CO₂ heat extraction
 - Japan: inject brine-CO₂ mixtures into Ogachi HDR site (T \approx 210°C, P \approx 100 bar)
 - LBNL: model reactive chemistry induced by brine-CO₂ injection

sCO₂ Critical Flow (Univ. Wisconsin)

Blowdown Facility Description (Pictures)

•Shadowgraphy set up using a fast frame camera to observe the shocks structure at the exit of the nozzles

•Some tests were conducted with a target plate located in front of the jet to measure the reaction force

View of the opening systems

4/21/2009

Future Trends for sCO₂ Power Cycles

Future trends and research needs

Intermediate-scale is needed to demonstrate commercial viability of fullscale technologies (i.e. 10 Mwe)

Materials

Long term corrosion testing (10,000 hrs)
Corrosion of diffusion-bonded materials (PCHE HX)
Coatings to limit/delay corrosion
Corrosion tests under stress

Heat Exchangers

Improved heat transfer correlations near the critical region for varying geometries
Improve resolution of local heat transfer measurements
Heat exchanger durability – studying effects of material, fabrication, channel geometry, fouling, corrosion, and maintenance

Rotordynamics

□Analysis of rotor-dynamic cross-coupling coefficients for sCO₂

Pulsation analysis

Development of transient pipe flow analysis models for sCO₂

Future trends and research needs

Control System and Simulation

Detailed models of turbo machinery
Improved transient analysis – surge, shutdown events

Fluid properties

□Mixture of sCO₂ and other fluids □Physical property testing of CO₂ mixtures at extreme conditions with significantly reduced uncertainties (i.e. \leq 1%)

10 MW Scale Pilot Plant

Summary

Both supercritical power cycles and the use of sCO₂ are not new concepts

sCO₂ is used in a variety of industries as a solvent

sCO₂ power cycles can be applied to many heat sources and have a small footprint

The near ambient critical temperature of CO₂ allows it to be matched with a variety of thermal heat sources

The combination of favorable property variation and high fluid density of sCO₂ allows small footprint of machinery

The near future goal is to improve understanding and develop commercial-scale power

International sCO₂ power cycle research is ongoing

Power production test loopsMaterials corrosion test facilitiesMachinery component test loopsFluid property testing

More research is needed sCO₂ power cycle applications

- Intermediate scale (10MW) demonstration
- Materials testing at high temperature, pressure and stress
- Property testing with sCO₂ mixtures
- Rotordynamics with sCO₂
- sCO₂ heat transfer and heat exchangers

More detailed dynamic simulation and control systems

Questions?