450 MW_e sCO₂ Power Cycles for Fossil-based Power Generation – Compressor concepts

GE Global Research Rahul Bidkar Doug Hofer Max Peter

Southwest Research Institute Tim Allison Meera Day Chris Kulhanek Jeff Moore Grant Musgrove

Acknowledgement: "This material is based upon work supported by the Department of Energy under Award Number DE-FE0024007"

Disclaimer: "This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."

The following slides show the conceptual design method and compares the compressor to literature

Background and design process

Preliminary design and comparisons

/ 2 sCO₂ Symposium 2016, San Antonio, TX 4/4/2016

The goal of this work is to conceptually design a compressor to couple with the turbine train

/ sCO₂ Symposium 2016, San Antonio, TX 4/4/2016

Experience charts and a meanline tool are used to design the compressor and recompressor

The Balje experience chart is adapted to develop a multi-stage compressor concept design

The number of compressor stages was selected by both efficiency and shaft L/D

/ 6 sCO₂ Symposium 2016, San Antonio, TX 4/4/2016

The polytropic efficiency from the meanline tool agreed with the Balje method and experience

The polytropic head from the meanline tool and the Balje method were less than experience

The meanline tool was used to generate off-design estimates of the compressor performance

The conceptual layout is back-to-back with a 4 stage recompressor and 2 stage main compressor

/ 10 sCO₂ Symposium 2016, San Antonio, TX 4/4/2016

Compressor rotordynamic analysis

- Analysis performed using XLTRC code on two rotor lengths: nominal and 15% longer, and two bearing configurations
- Nominal rotor, stiff bearings unacceptable configuration due to insufficient separation margins
- Long rotor, stiff bearings acceptable configuration
- Nominal rotor, soft-mounted bearings acceptable rotordynamics

Soft-mounted bearings, squeeze film damper and hole-pattern balance piston is the recommended configuration

Literature Review: Compressors

	Reference/Cycle	Dostal et al. [9]	Gong et al. [10]	Johnson et al. [11]	Moullec [1]	Mcdowell et al. [12]	Compressor Designs Present Work
	Operating Speed [rpm]	3600	3600	-	3600	6000	3600
ų	Length / Diameter [-]	8.6	-	-	6.6	10.2	8.4
	Compressor	Axial	Radial,	Radial,	Axial	Radial,	Radial, back to
	Configuration		back to	back to		back to	back
			back	back		back	
	Compressor /	-/-	41/81	-/-	250/370	131/220	65/123
	Recompressor Power						
	[MW]						
	Compressor Inlet /		77/200		74/320	77/282	67/257
	Outlet Pressure [bara]						
	Compressor Inlet /	42 / -	32 / 62	-/-	30/ 104	32 / 72	27 / 60
	Outlet Temperature						
	[°C]						
	Compressor Mass	2604	1915	-	5510	2653	2134
	Flow [kg/s]						
	Compressor Specific	-/-	0.38 /	-/-	1.06 /	0.25 / -	0.52 / 5.28
	Speed / Diameter		6.01		2.95		
	(First Stage) [-]						
	Compressor Efficiency [%]	96	85	-	90	81	83
	Recompressor Inlet /	-/-	80 / 208	-	76/319	79 / 280	68/255
	Outlet Pressure [bara]						
	Recompressor Inlet /	-/-	73/164	-/-	95/275	77 / 205	65/198
	Outlet Temperature						
	[°C]						
	Recompressor Mass	1146	1331	-	3240	1398	1282
	Flow [kg/s]						
	Recompressor Specific	-/-	0.62/5.13	-/-	1.70/	0.08/ -	0.66 / 4.46
	Speed / Diameter				2.10		
	(First Stage) [-]						
	Recompressor	94.8	89.8	-	90.0	79.9	80.1
	Efficiency [%]						

Literature Review: Turbines

Reference/Cycle	Dostal et al.	Gong et al.	Johnson et al. [11]	Moullec [1]	Mcdowell et al. [12]	50 MW _e turbine	450 MW _e turbine
	[9]	[10]				present	present
Speed [rpm]	3600	3600		3600	6000	9500	3600
Turbine configuration	-	-	Double flow	-	Double flow	Single flow	Double Flow
Turbine Power [MW]			1000	1677	220	14	360
Turbine inlet / outlet pressure [bara]	-/-	-/-	-/-	310.7 / 81.5	275.8 / 81	250.6 / 61.6	250.6 / 131.8
Turbine inlet / outlet temperature [°C]	-/-	-/-	-/-	620/565	704/543	700/ 518	700 / 612
Turbine mass flow [kg/s]	3750	-	-	8750	1150	343	3413
Turbine efficiency	92.9	-	-	93	90.1	90.3	90.6

Summary and Conclusions

Compressor/Recompressor

STAGE COMP 2-stage main compressor, 4-stage recompressor, 3600 rpm Single casing, back-to-back configuration is feasible

TURBINE BEARING SPAN "262 Inches

Overall, a thermodynamic cycle with 51.9% cycle efficiency Reheat cycle with recompression for 450 MW net electric output Concept designs for turbines Concept designs for compressor/recompressor

RECOMP

COMPRESSOR BEARING SPAN COMPRESSOR BEARING STAN COMPRESSOR ROTOR DIANE