50 MW_e and 450 MW_e sCO₂ Turbine concepts for Fossil-based Power Generation

GE Global Research

Rahul Bidkar Doug Hofer Andrew Mann Max Peter Rajkeshar Singh Edip Sevincer Azam Thatte Southwest Research Institute Stefan Cich Meera Day Chris Kulhanek Jeff Moore

Acknowledgement: "This material is based upon work supported by the Department of Energy under Award Number DE-FE0024007"

Disclaimer: "This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."

sCO₂ Application Space

Outline

- Overview sCO₂ power cycles
- Overview of the Turbine Design process
- Thermodynamic Cycle Modeling
- Layout considerations
- Turbine designs
 - Aero design
 - Mechanical Design
 - Rotordynamic considerations
- Turbine Technology Gaps

Overview - Turbine Design Process

Thermodynamic cycle modeling

50 MW_e cycle - 49.6% efficient cycle 450 MW

450 MW_e cycle – 51.9% efficient cycle

- Starting point Recompression 10 MW_e Sunshot cycle
- 700°C, 251 bar turbine inlet

10

• Water-cooled condenser at ISO ambient -- liquid at compressor inlet

HIGH TEMP

RECUPTE

- Reheat assumed for the 450 MW_{e} cycle
- No restrictions assumed on heater, reheater
- Designed HPT, LPT, compressor and re-compressor
- Assumed compact heat exchangers
- Loss models for turbine diffusors, re-heater & piping
- Seal leakage penalty modeled separately

imagination at work

11

CONDENSER

GE Public Class 1

Layout constraints

50 MW_e design

- Scale-up of the 10 MW_e GE-SwRI design
- Gearbox between high-speed turbine & generator
- Turbine rotor single forging
- Integral blades
- Speed 9500 rpm

450 MW_e design

- Clean sheet design
- No gearboxes, generator and turbine are directly coupled
- Coupled stages, large forgings
- Blades attached with dovetail joints
- Speed 3600 rpm

- 50 MW_{e} size is the upper limit for scaling the Sunshot architecture
- 450 MW_e was a clean sheet design

6 / sCO₂ Symposium 2016, San Antonio, TX 4/4/2016

450 MW_e – Layout Conceptual design & Cycle design

Final turbine layout - single shaft, single speed, dual flow, single casing

Reheat cycle with single-shaft, single speed layout and dual flow turbines to maximize efficiency

GE Public Class 1

Aero design & layouts for 50 $\rm MW_e$ and 450 $\rm MW_e$ scales

50 MW_e design

450 MW_e design

- 9500 rpm
- 72-inch bearing span, 8.7-inch bearing diameter

- 4-stage HPT, 3-stage LPT, both dual flow
- 3600 rpm
- 262-inch bearing span, 26-inch bearing diameter

Turbine Axial Sizing & Mechanical Design

- Turbine axial sizing performed based on space needed for bearings, seals, inlet and exit diffusors, thermal management section
- Rotors, blade roots , dovetails analyzed for stress

Turbine Rotordynamic Studies

- Analysis performed using XLTRC code on three configurations
- Rigid bearing analysis
 - Separation margin Second mode operation close to operating speed.
 - Good stability but not enough margin
- Reduced coupling weight led to an acceptable rotordynamic configuration
- Soft-mounted bearings and squeeze film dampers --- an alternate configuration with good stability and required separation margins

Two configurations with acceptable rotordynamic stability

Summary and Conclusions

- Presented a thermodynamic cycle with 51.9% cycle efficiency
 - Reheat cycle with recompression for 450 MW net electric output
- Presented conceptual design for turbine
 - Dual flow single casing HPT and LPT
 - Mechanical design and rotordynamic studies
- Overall, the 450 $\rm MW_e$ turbine concept is feasible based on preliminary design considerations

