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sCO2 Application Space 
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Outline 

• Overview – sCO2 power cycles 

• Overview of the Turbine Design process 

• Thermodynamic Cycle Modeling 

• Layout considerations 

• Turbine designs 

• Aero design 

• Mechanical Design 

• Rotordynamic considerations 

• Turbine Technology Gaps  
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Overview - Turbine Design Process 

Layout 
considerations 

Turbine 
Specifications 
• Pressure, temperatures 

• Speed 
• Target efficiency 

Turbine Aero 

Turbine Mechanical Design 

Turbine Layout 

Turbine 
Rotordynamics 

Thermodynamic 
cycle modeling 

Highly iterative and coupled process 
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Thermodynamic cycle modeling 

• Starting point – Recompression 10 MWe Sunshot cycle 

• 700oC, 251 bar turbine inlet 

• Water-cooled condenser at ISO ambient --  liquid at compressor inlet 

• Reheat assumed for the 450 MWe cycle 

• No restrictions assumed on heater, reheater  

• Designed HPT, LPT, compressor and re-compressor 

• Assumed compact  heat exchangers  

• Loss models for turbine diffusors, re-heater & piping 

• Seal leakage penalty modeled separately 

 

50 MWe cycle - 49.6% efficient cycle 
450 MWe cycle – 51.9% efficient cycle 
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Layout constraints 

50 MWe design 450 MWe design 

• Scale-up of the 10 MWe GE-SwRI design 

 

• Gearbox between high-speed turbine & 

generator  

 

• Turbine rotor – single forging 

 

• Integral blades  

 

• Speed 9500 rpm 

• Clean sheet design 

 

• No gearboxes, generator and turbine are 

directly coupled 

 

• Coupled stages, large forgings  

 

• Blades attached with dovetail joints 

 

• Speed 3600 rpm 

• 50 MWe size is the upper limit for scaling the Sunshot architecture 
• 450 MWe was a clean sheet design 
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450 MWe – Layout Conceptual design &  Cycle design 

450 MWe Thermodynamic cycle 

Single shaft , single speed option 

Dual shaft , dual speed option 

Final turbine layout – single shaft , single speed, dual flow, single casing 

Reheat cycle with single-shaft, single speed layout and dual flow turbines to 
maximize efficiency 
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Aero design & layouts for 50 MWe and 450 MWe scales 

450 MWe design 50 MWe design 

• 6-stage single flow 

 

• 9500 rpm 

 

• 72-inch bearing span, 8.7-inch bearing diameter 

 

• 4-stage HPT, 3-stage LPT, both dual flow 

 

• 3600 rpm 

 

• 262-inch bearing span, 26-inch bearing diameter 

 

HPT-1st stage  
LPT-3rd stage  
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Turbine Axial Sizing & Mechanical Design 

• Turbine axial sizing performed based on space needed for bearings, seals, inlet and exit 

diffusors, thermal management section 

 

• Rotors, blade roots , dovetails analyzed for stress 
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Turbine Rotordynamic Studies 

• Analysis performed using XLTRC code on three configurations 

 

• Rigid bearing analysis 

• Separation margin – Second mode operation close to operating speed. 

• Good stability but not enough margin 

 

• Reduced coupling weight led to an acceptable rotordynamic configuration 

 

• Soft-mounted bearings and squeeze film dampers --- an alternate configuration with good 

stability and required separation margins 

Two configurations with acceptable rotordynamic stability 



11 / 
sCO2 Symposium 2016, San Antonio, TX 

4/4/2016 

GE Public Class 1 

Summary and Conclusions 

• Presented a thermodynamic cycle with 51.9% cycle 
efficiency 

• Reheat cycle with recompression for 450 MW net electric output 

 

• Presented conceptual design for turbine  
• Dual flow single casing HPT and LPT 

• Mechanical design and rotordynamic studies 

 

• Overall, the 450 MWe turbine concept is feasible based on 
preliminary design considerations 

 

 

 


