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An integrally geared compander is composed of pinions 
having compressors and turbines geared to a common shaft 

Low speed 
driver/generator 

2-Stage turbine pinion 
(18 krpm) 

2-Stage compressor 
pinion (29 krpm) 

Common 
bull gear 

(3600) 
rpm 



An IGC allows for an interesting power block concept for 
S-CO2 Brayton cycles and alternative cycles 
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IGCs naturally allow for features that need to be 
explored to optimize cycle efficiency and reduce LCOE 

• Pinions may rotate at 
different speed to allow for 
improved stage efficiencies 

• IGC commonly employ flow 
control features  
– Inlet guide vanes 
– Variable diffuser vanes 
– Variable nozzles 

• Intercooling and reheating 
are easily implemented 
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Turbines 

Typical IGC Package 

Conventional Turbomachinery Train 

• Compressor, re-compressor, turbine and gearbox are assembled in a single compact core. 
• The second gearbox, additional couplings and housings in the conventional train can be 

eliminated 
• Simple IGC package can potentially reduce costs by up to 35% 

An IGC package incorporates all the key elements of a 
conventional train in a compact modular package 

(Based on very little concrete data) 



The 10 MWe Scale IGC cycle was optimized under the 
constraints of the APOLLO FOA 
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Group Property Value 
Heat Exchanger Pressure Drop (each Heat Exchanger) 1 % 

High Temp Recuperator Effectiveness 97 % 
Minimum Pinch Temperature 5 °C 
Heater Outlet Temperature 705 °C  

Cooler Outlet Temperature Range 35-55°C 
Generator and Mechanical 

Efficiencies 
Generator Efficiency 98.7% 

Compressor Mechanical/Pinion Losses 4% 
Turbine Mechanical/Pinion Losses 2% 

Pressure Limits System Min Pressure 1,070 psia 
System Max Pressure 3,953 psia 

Turbomachinery Compressor Isentropic Efficiency 83.5% 
Re-Compressor Isentropic Efficiency 84% 

Turbine Isentropic Efficiency 92% 

705 °C  

3,953 psia 



A simple recompression cycle at 55° was chosen as a 
“representative baseline” for proposed CSP SCO2 cycles 
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Single stage turbine reheating (after S2) was added and 
an efficiency gain of 0.5-1% was noted 

8 

Compressor
Stage 2

Expander
Stage 1

Low Temperature
Recuperator

Heater

Cooler

High Temperature
Recuperator

ReCompressor
Stage 1

Flow Split
Legend
Turbomachinery
Heaters
Coolers
Recuperators

Mix

Recompressor
Stage 2

Compressor
Stage 1

Expander
Stage 3

Expander
Stage 2

Expander
Stage 4

Reheat
2nd Stage



Additional reheat stages decreased efficiency due to 
pressure losses in the heat exchangers 
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Intercooling was added and showed improved 
efficiency for higher pressure ratio cycles 
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Intercooling plus reheating showed similar trends with 
further improved efficiencies for higher pressure ratio cycles 
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Optimal efficiency and  cycle configuration is 
dependent on a number of variables 
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Comparison of Recompression Cycle Configurations
Best Efficiency at 55 ° C Compressor Inlet Temp

No Reheat or Intercooling

1 Stage of Reheat

2 Stages of Reheat
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Intercool without Reheat

Intercool Plus 1 Stage of Reheat

Intercool Plus 2 Stages of Reheat

Intercool Plus 3 Stages of Reheat

• Pressure Ratio 
(PR) 
– Optimal PR 

varies with cycle 
configuration 

– Intercooling 
favors higher PR 

• Turbine Reheat 
– Single stage 

improves 
efficiency 0.5-1% 

– Pressure drops in 
reheater reduce 
cycle efficiency 
for multiple 
stages of reheat 

 



The transient challenges of a concentrated solar power 
plant are significant 

0
10
20
30
40
50

12:00 AM 6:00 AM 12:00 PM 6:00 PM 12:00 AM

Ambient Temperature °C 



35 40 45 50 55
45

46

47

48

49

50

51

C
yc

le
 E

ffi
ci

en
cy

 [%
]

Comparison of Recompression Cycles:
Flow Split and Pressure Ratio at Best Efficiency Points

35 40 45 50 55
20

25

30

35

Fl
ow

 S
pl

it 
[%

]

35 40 45 50 55

Compressor Inlet Temp [ ° C]

2.5

3

3.5

P
re

ss
ur

e 
R

at
io

 [-
]

A

A

A

B

B

B

 

Is high peak cycle efficiency really the target? 

• SAM modeling of typical sites 
shows an annual average 
compressor inlet temperature 
to be 37-38ºC assuming 15ºC 
approach temperature in the 
cooler 

• Cycle Modeling 
– Optimal flow split 

• 22-33% 
• Heavily dependent on CIT 

– Optimal PR 
• Varies with use of intercooling 

– Intercooled cycles are more 
efficient on hot days, and 
less efficient on cool days 
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Wide-Range impeller operation is essential to 
optimizing cycle efficiency 

• Range Requirements at Optimal 
Efficiency Condition (without 
using range reduction 
techniques) 

– Compressor > 55% 
– Recompressor > 37% 

• Control Strategies 
– Alter flow split and pressure 

ratio to reduce compressor 
requirements 

– Control compressor inlet 
temperature 

– Employ inlet guide vanes 
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Volume Flow, m3/s 

Main Compressor - No Intercooling

Recompressor - No Intercooling

Main Compressor - Intercooled

Recompressor - Intercooled

Typical Compressor 
Head-Flow Characteristic 

 



Range requirements for the compressor exceed current 
technology capabilities 



IGVs may be an essential feature in adapting to varying 
compressor inlet temperatures 

• Inlet Guide Vanes 
– Can be actuated to 

produce similar 
head flow 
characteristics as 
required to obtain 
an optimal solution 

• Alternate 
strategies also 
exist 
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Who really cares about efficiency? 
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Really, it is money that is important 



Cost estimation of turbomachinery is promising 

• Compander 
– 400-600 $/kWe 

depending on 
compander size 

– Highest cost component 
on the train 

• Generator 
– Readily available 
– Relatively small portion 

of total $/kWe  
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Very little published data exists on rules of thumb for 
calculating HE costs 

• Heat Transfer 
– Total Cost = 301.46 $/kWGen 

• Recuperator 
– Highest cost/kW transferred 
– Highest power transferred 
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Component 
Duty Estimation 

(kWThermal/kWGene

rator) 

Cost Estimation 
($/kWThermal) 

Cost Estimation 
($/kWGenerator) 

High-Temperature 
Recuperator 3.990 50 199.5 

Low-Temperature 
Recuperator 1.269 30 38.07 

Primary Heater & Re-
Heater 0.983 40 39.32 

Cooler 0.983 25 24.575 



Power block costs are expected to be meet the DOE 
APOLLO FOA targets 

• Cost reduction achieved as the size is increased until the 
manufacturing limit is reached. 

• Cost is reduced as multiple units are produced. 
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Deployment Strategy 
• Initial 10MWe Nominal 

Design  
• Scale to 20-25MWe in 

the same gearbox 
• Produce at least 2 copies 

of the package to 
increase reliability 

• Cost are expected to be 
below CAPX targets 
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Impact of LCOE vs. Scale shows a sweet spot for CSP in 
the 50-200 MW plant size 

• SAM Model  
– Started with FOA 

requirements 
– Input target comp. 

efficiencies 
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Key Parameters Targeted by FOA Key Financial Parameters from SunShot 
Design HTF inlet temperature (°C) 720 Inflation rate (%/year) 3 
PHX temperature difference (°C) 15 Real discount rate (%/year) 5.5 
ITD at design point (°C) 15 Internal rate of return target 15% 
Rated cycle conversion efficiency 50% IRR maturation (years) 30 
Power block cost ($/kW) 900 Loan duration (years) 15 
Heliostat field cost ($/m2) 75 Loan percent of total capital cost 60% 
Thermal storage cost ($/kWhth) 15 Loan annual all-in interest rate 7.1% 

Receiver Tower and Solar 
Reception become Burdensome 

Cap-ex/Produced 
Power Excessive 

LCOE → 5.2e-6 lira/joule LCOE → 6.6 ₵/kWh 



LCOE Optimization shows that the most likely path for 
CSP commercialization is to incorporate fossil assist 

• CSP Optimization Study - Variables 
– Fossil assist: Utilize fossil heat when solar power is 

not available 
• Reduces LCOE because equipment is producing 

substantially more energy in the 30 year plant life 
• Reduces thermal stresses due to transient startup 

cycles 
• Various implementations exist depending on the 

thermal energy storage solution 
– Thermal storage options 

• Varied thermal storage from 0h, 12h, & 14h 
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Investigated System Models 

• Four plant configurations were found having a 
good combination of solar output and LCOE 
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Size (MW) 100 40 100 100 
Annual generation (MWh) 768,037 310,815 550,754 454,993 
Annual operation time 99.87% 99.69% 74.16% 63.18% 
Percent power from fossil 36.52% 66.10% 18.09% 0.00% 
Thermal storage (hrs) 12 0 12 14 
Fossil fill 

All Day/All Year 
All Day/All Year Daytime/Sum

mer 
None 

Fossil backup cost ($/kW) 50 50 50 0 
Power block cost ($/kW) 800 925 800 800 
Real LCOE (¢/kWh) 4.95 5.90 6.00 6.67 
Nominal LCOE (¢/kWh) 6.80 8.10 8.24 9.16 
Annual fuel use (MMBTU) 1,899,547 562,362 966,168 0 

Annual CO2 emitted (kg/MWh) 181.5 328.0 93.0 0 

Average Ambient Temp. (°C) 19.9 19.9 22.9 23.4 



LCOE vs. Carbon Tax 

 

26 Real LCOE trends for changes in carbon tax 

Even aggressive CO2 
emissions show that fossil 
fill is favorable for lowering 
CSPs LCOE 



Breakdown of LCOE 

• Although fuel and O&M 
costs increase with fossil fill, 
the relative $/kWh 
decreases substantially 
because more electricity is 
produced each year. 

• Adding fossil fill does not 
require new technology, 
current quotes have been 
procured for similar 
equipment under the STEP 
initiative. 
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LCOE Breakdown by Expense Type 

LCOE Breakdown by System Cost 

 



An IGC allows for an interesting power block concept for 
S-CO2 Brayton cycles and alternative cycles 
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