

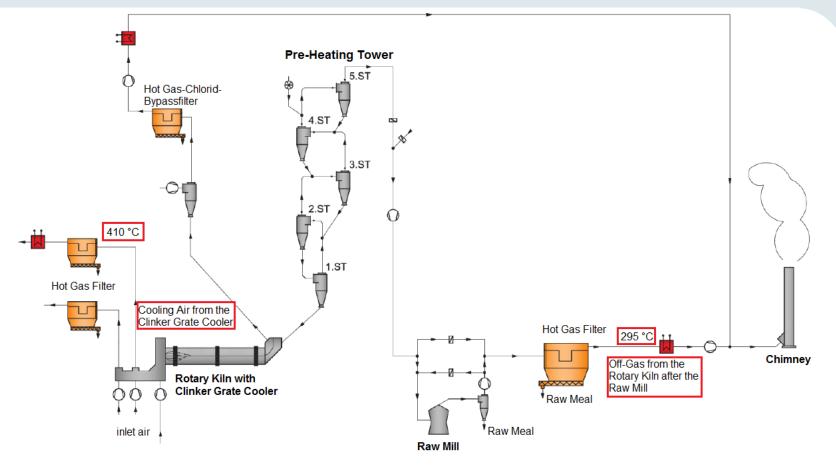
INSTITUT FÜR ENERGIETECHNIK UND THERMODYNAMIK Institute for Energy Systems and Thermodynamics

Comparison of Conventional and CO₂ Power Generation Cycles for Waste Heat Recovery

The 5th International Symposium - Supercritical CO₂ Power Cycles March 29-31, 2016, San Antonio, Texas

> S. Flegkas, G. Klemencic M. Haider, A. Werner, H. Leibinger

Overview


- Waste Heat Recovery
- cement plant Hatschek
- Steam Rankine Cycle
- Organic Rankine Cycle
- > sCO₂ advantages
- > sCO₂ Brayton Cycle (sCO₂-BC)
- > tCO₂ Brayton Cycle (tCO₂-BC)
- ➤ tCO₂ Rankine Cycle (tCO₂-RC)
- Cycle Comparison
- Conclusions

Waste Heat Recovery

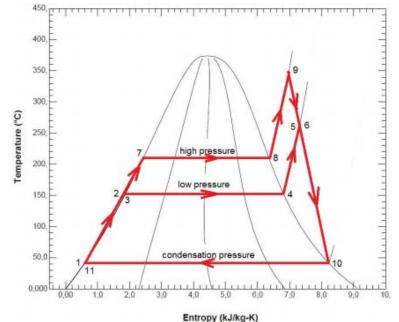
- waste heat recovery from industrial processes is of rising interest
 in terms of the Energy Efficiency Directive of the EU and Climate Change
- the efficiency of using waste heat is highly influenced by the used working fluid (e.g. water, organic substances, CO₂,...) and certain components of the cycle (compressor, pump, turbine,...)
- 5 different cycles investigated: Steam Rankine Cycle (SRC), Organic Rankine Cycle (ORC), supercritical CO₂-Brayton Cycle (sCO₂-BC), transcritical CO₂-Brayton Cycle (tCO₂-BC) and transcritical CO₂-Rankine Cycle (tCO₂-RC)
- waste heat source is the cement plant Hatschek in Gmunden (Austria)

We The cement plant Hatschek

2 major heat sources are available:

- the off-gas from the rotary kiln after the raw mill (295 °C, 78 kg/s)
- the cooling air from the grate cooler at the exit of the rotary kiln (410 °C, 14 kg/s)
- the hot gas from the chlorine bypass is not included (low mass flow)

Steam Rankine Cycle


- Frequently used and well developed system
- + Fluid characteristics
- + Pump consumption

Two-pressure system

- further cooling of the exhaust gas
- reduction of exergy losses

Operating parameters		
High pressure level	20 bara	
Low pressure level	6.5 bara	
Max. steam temperature	395°C	
Min. allowed ΔT in HEX	15°C	
Turbine isentropic efficiency	75%	

- Not suited for low temperature applications
- Size of steam turbines
- Water treatment system

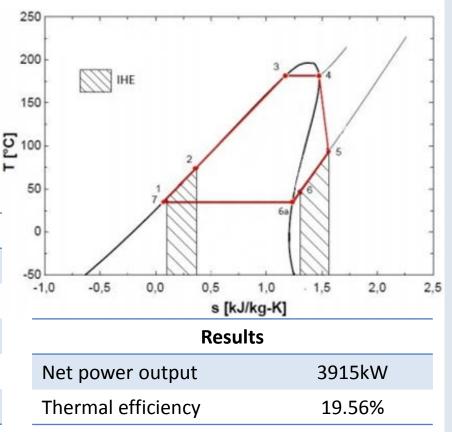
Results

Power output	3297kW
Thermal efficiency	22.39%

The 5th International Symposium - Supercritical CO₂ Power Cycles March 29-31, San Antonio, Texas

Organic Rankine Cycle

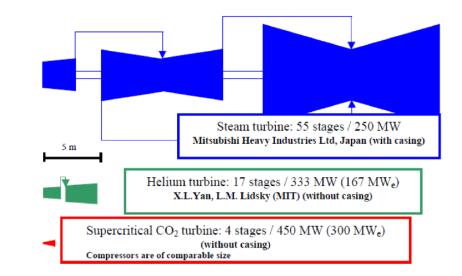
- Suited for low temperature applications
- + Position of the critical point
- + No superheating


Fluid selection

- Critical temperature appropriate to the heat source
- •High heat transfer capacity

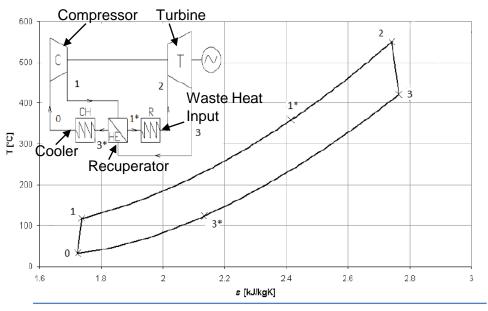
•Best fit: Cyclopentane (θ_{crit}=238.27°C)

Operating parameters		
Operating pressure	34.6bara	
Condensation pressure	0.6 bara	
Max. operating temperature	217°C	
Cooling water temperature	15°C	
Turbine isentropic efficiency	75%	


- Expensive working fluids
- Flammable
- Global warming potential

sCO₂ - advantages

- sCO₂ cycles achieve high efficiencies at low temperatures
- the high operating pressure enables smaller size components
- well known thermodynamic properties
- stability, non-toxicity, non-flammable
- low critical temperature (31°C)
- high power density
- low surface tension (reduced effects of cavitation in the machinery)
- abundantly available
- low cost
- easy handling
- plant personnel accustomed to CO₂



sCO₂-Brayton - Cycle (sCO₂-BC)

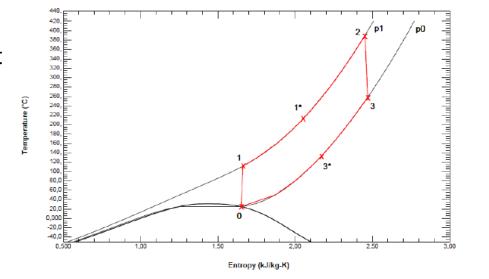
Concept of a simple Brayton Cycle:

➤ 0-1: compression of the fluid > 1-1*: heating up in the recuperator > $1^{*}-2$: heating up with the waste heat \geq 2-3: expansion in the turbine section > 3-3*: cooling in the recuperator > 3*-0: cooling with water

Operating parameters

High pressure level		221.4 bara	
		Low pressure level	73.8 bara
Results		Lowest cycle temperature	34 °C
Net power output	4007 kW	Turbine inlet temperature	302 °C
Thermal efficiency20.8 %Cooling water temperature12 °CTurbine isentropic efficiency91 %		Cooling water temperature	12 °C
		91 %	
		Compressor isentropic efficiency	89 %
The 5 th International Symposium - Supercritical CO ₂ Power Cycles			8

March 29-31, San Antonio, Texas



tCO₂-Brayton - Cycle (tCO₂-BC)

> very similar to the sCO_2 -BC, but conditions at the entry to the compressor below the critical point conditions $\rightarrow CO_2$ still in gaseous state on the saturated vapor line

 less power consumption for compression because of lower pressure -> smaller compressibility factor

Results	
Net power output	4295 kW
Thermal efficiency	22.3 %

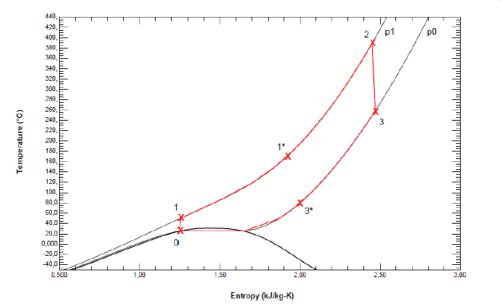
Operating parameters

	High pressure level	221.4 bara
	Low pressure level	64.34 bara
	Lowest cycle temperature	25 °C
4295 kW	Turbine inlet temperature	302 °C
22.3 %	Cooling Water temperature	12 °C
	Turbine isentropic efficiency	91 %
	Compressor isentropic efficiency	89 %
The 5 th International Symposium - Supercritical CO ₂ Power Cycles		

March 29-31, San Antonio, Texas

tCO2-Rankine - Cycle (tCO2-RC)

is like the SRC a condensation process \rightarrow two phase region is passed, CO₂ completely liquified

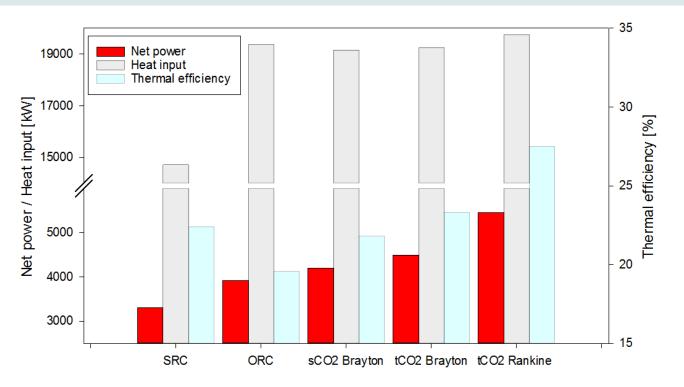

a pump is used (instead of a) compressor)

 \succ the entry in the pump is on the saturated liquid line, below critical point

 \blacktriangleright notable less energy for compression \rightarrow CO_2 in the liquid state (high density)

 \succ possible problems with the cooling, depending on ambient conditions (e.g. water sources) \rightarrow high water mass flow is needed (420 kg/s)

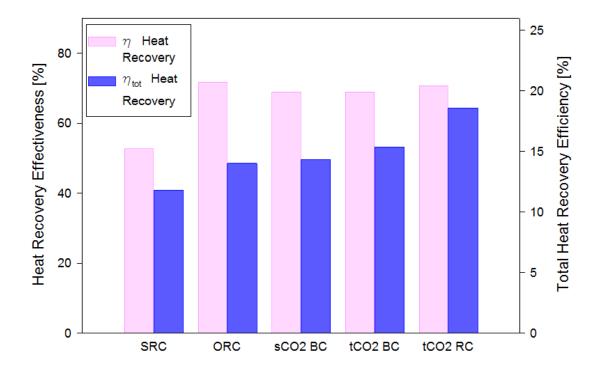
Results	
Net power output	5192 kW
Thermal efficiency	26.3 %


Operating parameters

r mass flow is	High pressure level	221.4 bara
	Low pressure level	64.34 bara
	Lowest cycle temperature	25 °C
5192 kW	Turbine inlet temperature	302 °C
26.3 %	Cooling Water temperature	12 °C
	Turbine isentropic efficiency	91 %
	Compressor isentropic efficiency	89 %
The 5 th International Symposium - Supercritical CO ₂ Power Cycles		

March 29-31, San Antonio, Texas

Cycle Comparison


>tCO₂-RC supplies the highest electrical power \rightarrow low specific work rate of the pump but potential cooling problems (tCO₂-RC 420 kg/s, tCO₂-BC 130 kg/s, sCO₂-BC 70 kg/s)

SRC has significantly less heat input (about 5000 kW) → thermo-physical properties of water not sufficient for using low temperature waste heat

>tCO₂-RC has best thermal efficiency, SRC better therm. eff. than ORC and sCO₂-BC \rightarrow less power output, but also less heat input

Waste Heat Recovery - Analysis

Heat recovery effectiveness: ratio between heat input and available heat Total heat recovery efficiency: ratio between net power output and available heat

>Heat recovery effectiveness of the SRC significantly lower than all other investigated cycles due to decreased heat input

>tCO₂-RC yields the highest total heat recovery efficiency since it amounts to the highest produced net power at about equal heat input

Conclusions

- > potential waste heat recovery systems for a cement plant were analyzed
- different power cycles were simulated, aim was the comparison between currently used cycles and new supercritical CO₂ concepts
- transcritical CO₂ Rankine cycle delivers best results, but possible problems with cooling
- all CO₂ cycles perform better than the currently used power cycles for waste heat recovery (SRC, ORC)
- ORC approaches the results of the CO₂ cycles, but organic working fluids have several disadvantages (flammable, expensive, harmful to the climate,...)
- supercritical/transcritical power cycle technology should be further developed – they could be an economic alternative in waste heat recovery

Thank you very much for your attention !