Sedf

Thermodynamic model investigation for S-CO₂ Brayton cycle for coal-fired power plant application

5th International Supercritical CO₂ Power Cycles Symposium San Antonio, Texas

Qiao Zhao, Mounir Mecheri, Thibaut Neveux – EDF R&D Romain Privat, Jean-Noël Jaubert-LRGP Nancy March 31st, 2016

- Introduction and context
- Objectives
- Methodology
- Thermodynamics investigation (Results)
- Conclusion and future works

CONTEXT

- Challenge in energy demand and the important role of coal in energy mix
 - Growing world energy demands :
 - 22126 TWh in 2011 ۲

Challenge in environment

□ CO₂ emission: **31.3** Gt in 2011

Electricity ***** 80% from 1990 to 2010

Power Plant Efficiency

improvement

- **↑70%** is expected by 2035
- Coal-fired plants: 41% of world's power generation
- Power generation: 42% of world's CO₂ emission

5th International Supercritical CO₂ Power Cycles Symposium, Qiao ZHAO

World energy production - IEA world energy outlook 2013 3

INTRODUCTION

- State of the art for coal-fired plant
 - S-Steam:46% LHV 30MPa/873/893 K
 - Potential of enhancement (material/architecture/working fluid?)

S-CO₂ cycle allows at least **7** 5%pts LHV efficiency

Operation condition

- In the vicinity of the critical point
- High T(up to 1300K) and P(30 MPa)

- Introduction and context
- Objectives
- Methodology
- Thermodynamics investigation (Results)
- Conclusion and future works

OBJECTIVES OF THIS STUDY

Thermodynamic model (EoS) for S-CO₂ Calculations on density, speed of sound, heat capacity, transport properties Difficulty on thermodynamic models: **Operation condition**

- High T and P
- Non-classical behaviors near critical point

Objectives

Comparison of existing thermodynamics models (EoS) for CO₂

•Selection of the most accurate model for CO₂ (in the vicinity of the critical point and supercritical region)

EoS sensitivity study in process simulation

- Introduction and context
- Objectives
- Methodology
- Thermodynamics investigation
- Conclusion and future works

Step 1: CO₂ critical property comparison with collected DIPPR database **Step 1: Simulated CO₂ critical properties compared with experimental data** Cubic EoS, virial type EoS, EoS expressed in terms of Helmholtz energy

Candidate EoS: PR, PR-BM, SRK, LKP, BWRS, SW

Peng-Robinson (PR); Peng-Robinson with Boston-Mathias alpha function (PR-BM); Soave modified Redlich-Kwong (SRK); Lee-Kesler-Plöcker (LKP), Benedict-Webb-Rubin modified by Starling and Nushiumi (BWRS) and Span-Wagner (SW).

- Introduction and context
- Objectives
- Methodology
- Thermodynamics investigation
 - Step 1: CO₂ critical property comparison
 - Step 2: Criteria property comparison near the critical point
 - Step 3: Criteria property comparison in the region of interest
 - Step 4: Model Sensitivity (process simulation)
- Conclusion and future works

STEP 1) CRITICAL PROPERTIES COMPARISON

- Experimental T_c, P_c as input parameters
 T_c=304.21 K, P_c=7.3830 MPa
- Except for SW EoS
 - □ T_c=304.13 K, P_c=7.3773 MPa

- Critical density
 - \square SW and LKP EoS exhibit 0.1% on ρ_c
 - SRK EoS shows the biggest deviation

- Introduction and context
- Objectives
- Methodology
- Thermodynamics investigation
 - Step 1: CO₂ critical property comparison
 - Step 2: Criteria property comparison near the critical point
 - Step 3: Criteria property comparison in the region of interest
 - Step 4: Model Sensitivity (process simulation)
- Conclusion and future works

STEP 2) COMPARISON NEAR CRITICAL POINT

- Introduction and context
- Objectives
- Methodology
- Thermodynamics investigation
 - Step 1: CO₂ critical property comparison
 - Step 2: Criteria property comparison near the critical point
 - Step 3: Criteria property comparison in the region of interest
 - Step 4: Model Sensitivity (process simulation)
- Conclusion and future works

STEP 3) COMPARISON IN ENTIRE REGION OF INTEREST

In the entire region of interest

- 300K <T<900 K and 7 MPa <P<30 MPa</p>
- 2641 "density" pts; 359 "heat capacity" pts; 138 "speed of sound" pts

Δ is defined as the absolute mean average of (property valueexperimental -property valueEoS calculated)/property valueexperimental

SW is the most accurate EoS in the entire region of interest

- Introduction and context
- Objectives
- Methodology
- Thermodynamics investigation
 - Step 1: CO₂ critical property comparison
 - Step 2: Criteria property comparison near the critical point
 - Step 3: Criteria property comparison in region of interest
 - Step 4: Model Sensitivity (process simulation)
- Conclusion and future works

STEP 4) SENSITIVITY STUDY

Set SW EoS simulation as reference

STEP 4) SENSITIVITY STUDY: RC BRAYTON CYCLE

[1]M. Mohagheghi and J. Kapat, "Thermodynamic Optimization Of Recuperated S-CO₂ Brayton Cycles For Solar Tower Applications", *Proceedings of ASME Turbo Expo*, 2013

edf

STEP 4) SENSITIVITY STUDY: RC BRAYTON CYCLE

- Heat in economizer underestimated
- Small impact on cycle efficiency

STEP 4) SENSITIVITY STUDY: RRC BRAYTON CYCLE

[2]M. Mecheri and Y. Le Moullec, "Supercritical CO₂ Brayton Cycles For Coal-fired Power Plants", accepted by *Energy* in 2016

edf

STEP 4) SENSITIVITY STUDY: RRC BRAYTON CYCLE

result simulated by SW)/result simulated by SW

- Hot Pinch temperature on economizer overestimated
- Heat in economizer underestimated (except for BWRS)
- Small impact on cycle efficiency
- Influence of EoS becomes more complex when layout is more complicate and number(component)

STEP 4) SENSITIVITY STUDY: DISCUSSION

- Small effect of EoS on power cycle efficiency
- No involvement of speed of sound in cycle efficiency calculation (strong involvement in machinery sizing)
- Predictable strong dependence of EoS on Process Design and Economical Assessment
- Foreseen effects on Brayton cycle optimization: maximize the cycle efficiency

- Introduction and context
- Objectives
- Methodology
- Thermodynamics investigation
- Conclusion and future works

Conclusion

- SW EoS is the most accurate model (among the 6 studied EoS) in both critical and supercritical region for CO₂
- Small effects of EoS observed on power cycle efficiency
- However process design is expected to strongly depend on EoS
- Precision of EoS is required for complex cycle layout
- Accurate EoS is required for mixture of CO₂

Future Work

- Process optimization with respect to energy and economics (Non-Linear Programming)
- Propagation of thermodynamic model uncertainty to cycle output
- Optimization of process structure (Flowsheet)

Thank you for your attention

Contacts: qiao.zhao@edf.fr

edf

BACK UP 1) HYPOTHESIS AND CONSTRAINTS

Tin compressor (=Tcooling) (K)	320
Pin compressor (MPa)	3.274
Pout compressor (MPa)	12
T heater (K)	1373
Tpinch cold (K)	20
isentropic efficiency of turbine	0.9
isentropic efficiency of compressor	0.89
heat source (MW)	200
Pressure drop in every component	
(%)	1

Tin compressor (=Tcooling) (K)	308.15
Pin compressor (MPa)	75
Pout compressor (MPa)	20
Pout sec compressor (MPa)	19.9
T heater (K)	773
Tpinch cold (K)	10
isentropic efficiency of turbine	0.9
isentropic efficiency of compressor	0.89
Mechanical efficiency of compressor	0.981
heat source (MW)	200
Pressure drop in every component (MPa)	0.1
Temperature equality in Flow(9) and Flow(3)	

Constant heat source (1187 MW)in the boiler

BACK UP 2) THERMODYNAMICS BASIS (HEAT CAPACITY)

$$c_{p}^{*}(T^{*}, v^{*}) = c_{p}^{\bullet}(T^{*}, v^{*}) + c_{p}^{res}(T^{*}, v^{*})$$
$$c_{p}^{\bullet} = A + B(\frac{\frac{C}{T}}{sinh(\frac{C}{T})})^{2} + D(\frac{\frac{E}{T}}{cosh(\frac{E}{T})})^{2}$$

$$\begin{cases} s^{var}(T, v) = -\left[\frac{\partial a^{var}(T, v)}{\partial T}\right]_{v} \\ P^{var}(T, v) = -\left[\frac{\partial a^{var}(T, v)}{\partial v}\right]_{T} \\ u^{var}(T, v) = a^{var}(T, v) + T \cdot s^{var}(T, v) \\ C_{v}^{var}(T, v) = \left[\frac{\partial u^{var}(T, v)}{\partial T}\right]_{v} \\ C_{p}^{var}(T, v) = C_{v}^{var} - T \frac{\left[\left(\frac{\partial P^{var}(T, v)}{\partial T}\right)\right]^{2}}{\left(\frac{\partial P^{var}(T, v)}{\partial v}\right)_{T}} \end{cases} \begin{cases} A = 29370 \\ B = 34540 \\ C = 1428 \\ D = 26400 \\ E = 588 \end{cases}$$

SW EoS:

$$\frac{c_p}{R} = \underbrace{-\tau^2(\varphi^{\circ}_{\tau\tau} + \varphi^r_{\tau\tau})}_{\frac{c_v}{R}} + \underbrace{\frac{(1 + \delta\varphi^r_{\delta} - \delta\tau\varphi^r_{\delta\tau})^2}{(1 + 2\delta\varphi^r_{\delta} + \delta^2\varphi^r_{\delta\delta})}}_{\approx (\frac{\partial p}{\partial \rho})_T}$$

edi

BACK UP 2) THERMODYNAMICS BASIS (SPEED OF SOUND)

$$w = \sqrt{(\frac{\partial P}{\partial \rho})_s}$$

SW EoS:

$$\frac{w^2}{RT} = \underbrace{1 + 2\delta\varphi_{\delta}^r + \delta^2\varphi_{\delta\delta}^r}_{\approx(\frac{\partial p}{\partial\rho})_T} - \underbrace{\frac{(1 + \delta\varphi_{\delta}^r - \delta\tau\varphi_{\delta\tau}^r)^2}{(1 + \delta\varphi_{\delta}^r - \delta\tau\varphi_{\delta\tau}^r)^2}}_{-\frac{c_v}{R}}$$

edr

BACK UP STEP 3) SW EoS IN ENTIRE REGION OF INTEREST

Region of entire study: 300<T<900 K, 7<P<30 MPa</p>

- Satisfactory agreement between ρ_{SW EoS calculated} and ρ_{experimental}
- Parity curve with all accessed experimental data
 - Δρ=2.4 %
 - Relative important deviations (>15%) in the vicinity of the critical point

BACK UP STEP 3) SW EoS IN ENTIRE REGION OF INTEREST

BACK UP EoS IN ENTIRE REGION OF INTEREST

BACK UP RRC BRAYTON CYCLE

BACK UP ECONOMIZER PINCH PROBLEM

edf

BACK UP RESULTS – Cycle economizer configuration

- 3 studied cases (all other parameters being similar with reference case):
 - No recompression cycle
 - □ Single recompression cycle (ref. case)
 - Double recompression cycle
- Significant reduction of economizer temperature difference between heat and cold side
 - \rightarrow more heat is exchanged
 - \rightarrow cycle efficiency increases
- Double recompression cycle efficiency gains do not justify expected material additional costs

Economizer temperature difference as a function of cumulative duty

